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Abstract
Objective: To analyze the diagnostic value of computed tomography (CT) radiomics models in di�erenti-
ating gastrointestinal stromal tumors (GIST) and other mesenchymal tumors. Materials and Methods: A 
retrospective analysis of clinical data from 153 patients with pathologically con�rmed gastrointestinal me-
senchymal tumors treated in our hospital from July 2019 to March 2024 was conducted, including 107 ca-
ses of GIST, 18 cases of leiomyoma, and 28 cases of schwannoma. LASSO regression was used for feature se-
lection. Logistic regression and Random Forest (RF) models were established based on selected features 
using machine learning algorithms, with the dataset divided into training (107 cases) and validation sets 
(46 cases) at a 7:3 ratio. The diagnostic performance of the models was evaluated using receiver operating 
characteristic (ROC) curves. Results: In the training set, there were signi�cant di�erences between GIST 
and non-GIST in terms of enhancement degree, age, maximum diameter, and tumor location distribution 
(P<0.05). A total of 180 radiomics features were extracted using A.K software. LASSO regression reduced 
the high-dimensional data to 13 radiomics features. Logistic regression and RF models were established 
based on these 13 features. The AUC for the Logistic regression model was 0.753 in the training set and 
0.582 in the validation set, while the AUC for the RF model was 0.941 in the training set and 0.746 in the va-
lidation set. The RF model showed higher diagnostic performance than the Logistic regression model (P< 
0.05). Decision curve analysis showed that the net bene�t of the RF model in di�erentiating GIST was supe-
rior to classifying all patients as either GIST or non-GIST and also superior to the Logistic regression model 
within a probability threshold range of 20%-90%. Conclusions: The machine learning models based on ra-
diomics features have good diagnostic value in predicting the pathological classi�cation of GIST and other 
mesenchymal tumors, with the RF model showing superior diagnostic value compared to the Logistic reg-
ression model.
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Introduction

Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors 
in the gastrointestinal tract, originating from the interstitial cells of Cajal in the gas-
trointestinal wall, characterized by their aggressiveness and high metastatic po-

tential [1]. Early diagnosis and precise classi�cation of GIST are crucial for selecting appro-
priate treatment strategies and improving patient prognosis [2]. Currently, the diagnosis 
of GIST mainly relies on imaging examinations, pathological tests, and immunohistoche-
mical markers [3]. However, traditional imaging techniques such as computed tomogra-
phy (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET)/ 
CT, although essential for detecting tumor location, size, and morphology, have limita-
tions in distinguishing GIST from other mesenchymal tumors such as leiomyoma and sch-
wannoma [4]. These tumors may appear similar on imaging but di�er signi�cantly in bio-
logical behavior, treatment approaches, and prognosis, making accurate di�erentiation 
clinically signi�cant.

Radiomics is an emerging technology that extracts a large number of quantitative fe-
atures from imaging data, revealing tumor heterogeneity and microcharacteristics that 
traditional imaging techniques cannot detect [5]. The core concept of radiomics is to per-
form deep mining and analysis of medical images through computer algorithms, extrac-
ting various features including shape, texture, and intensity, and then establishing quanti-
tative models for tumor classi�cation, diagnosis, and prognosis assessment [6]. Combined 
with machine learning algorithms, radiomics can signi�cantly improve the utilization e�-
ciency of imaging data and diagnostic accuracy. In recent years, radiomics has shown broad
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application prospects in the study of various tumors [7, 8]. 
For example, in studies of lung cancer, breast cancer, and gli-
omas, radiomics models have been proven to provide im-
portant diagnostic and prognostic information. By extrac-
ting imaging features and combining them with machine le-
arning techniques, researchers can construct e�cient classi-
�cation and prediction models to assist clinical decision-ma-
king. However, research on radiomics in GIST and other me-
senchymal tumors is relatively sparse. Existing studies ma-
inly focus on the preliminary extraction and analysis of ima-
ging features, lacking systematic feature selection, model 
construction, and validation processes. Especially in terms 
of large-scale clinical data validation and evaluation of mo-
del generalizability, further exploration is needed. Based on 
this, our study attempts to use CT radiomics technology 
combined with machine learning algorithms to establish an 
e�cient model capable of di�erentiating GIST and other 
mesenchymal tumors and to validate the application value 
of radiomics in the di�erential diagnosis of GIST and other 
mesenchymal tumors. If proven e�ective, it could provide a 
new auxiliary tool for clinical diagnosis, helping to improve 
diagnostic accuracy, optimize treatment plans, and ultima-
tely improve patient clinical outcomes.

Materials and Methods

Basic information 
A retrospective analysis was conducted on the clinical data 
of 153 patients with pathologically con�rmed gastrointesti-
nal mesenchymal tumors treated in our hospital from July 
2019 to March 2024, including 107 cases of GIST, 18 cases of 
leiomyoma, and 28 cases of schwannoma. Inclusion criteria: 
1) patients had complete preoperative CT enhanced ve-
nous phase images; 2) patients were pathologically and im-
munohistochemically con�rmed to have gastrointestinal 
mesenchymal tumors [9]; 3) tumor diameter >1.5cm; 4) pa-
tients aged ≥18 years with complete data available for ana-
lysis. Exclusion criteria: 1) patients received relevant treat-
ment before surgery; 2) patients with other tumor diseases 
or severe internal or external diseases; 3) patients with a his-
tory of abdominal surgery; 4) patients with cognitive impa-
irment and/or mental illness. This study was approved by 
the Medical Ethics Committee.

Examination methods 
A 64-slice Philips spiral CT scanner (Netherlands) was used, 
with patients in a supine position. Scanning parameters: tu-
be voltage 120kV, tube current 380mA, window width 350 
HU, window level 10HU, slice thickness 2.5mm, pitch 1.003, 
rotation time 0.5s, collimation 64×0.625mm, matrix 512× 
512. Enhanced scanning used non-ionic contrast agent io-
hexol (0.35mg/mL), injected intravenously using a high-
pressure injector at a rate of 3mL/s, with a total contrast vo-
lume of 70-90mL. Arterial phase scanning was performed 
when the CT value of the abdominal aorta reached 100HU, 
followed by venous phase scanning with a 35s delay.

Image segmentation and feature extraction

Radiomics segmentation and feature calculation
The enhanced abdominal CT venous phase images (DICOM 
format) were imported into A.K software. One experienced 
radiologist manually outlined the largest slice of the lesion 
and the two slices above and below it, avoiding necrotic and 
cystic areas. The outlined regions of interest (ROI) were fu-
sed to obtain a three-dimensional ROI. A.K software was 
used to calculate 180 radiomics parameters within the ROI, 
primarily including �ve categories: Histogram features, Gray 
Level Size Zone Matrix (GLSZM), Haralick features, Formfac-
tor, and Gray Level Co-occurrence Matrix (GLCM).

Radiomics feature selection 
First, the 180 radiomics parameters of the �ve categories 
were standardized. Spearman's method in A.K software was 
used to calculate the redundancy between parameters, with 
0.7 set as the redundancy threshold. The retained parame-
ters were dimensionally reduced using LASSO, and the op-
timal radiomics features with non-zero coe�cients were se-
lected through 10-fold cross-validation, ultimately extrac-
ting 13 radiomics features.

Establishment and validation of machine learning 
models 
The selected radiomics features were modeled using Logis-
tic regression and Random Forest (RF) machine learning al-
gorithms with IPMS software, and divided into training and 
validation sets in a 7:3 ratio. The training set included 107 
cases (77 GIST, 30 non-GIST), and the validation set included 
46 cases (30 GIST, 16 non-GIST). The diagnostic performan-
ce of the two models in the training and validation sets was 
tested using receiver operating characteristic (ROC) curves, 
and the area under the curve (AUC) was compared using the 
Delong test. Decision curves were used to evaluate the net 
bene�t of the two models.

Statistical analysis 
SPSS 24.0 software was used for statistical analysis of clinical 
data. For measurement data, the Kolmogorov-Smirnov test 
was used to check for normal distribution. Normally distri-
buted data were compared using the independent samples 
t-test and expressed as;            non-normally distributed data 
were compared using the Mann-Whitney test and expres-
sed as median. Chi-square tests were used for comparing ca-
tegorical data between groups. Modeling and comparison 
of the two models based on selected features were perfor-
med using IPMS software, with P<0.05 indicating statistical-
ly signi�cant di�erences.

Results

The enhancement degree of GIST and non-GIST in the tra-
ining set and the di�erences in age, maximum diameter, and 
tumor location distribution in the training and validation 
sets were statistically signi�cant (P<0.05).

 sx

93 Hellenic Journal of Nuclear Medicine     May-August 2024•   www.nuclmed.gr142

Research Article



Ta
bl

e 
1.

 C
om

pa
ris

on
 o

f b
as

ic
 d

at
a 

be
tw

ee
n 

G
IS

T 
an

d 
no

n-
G

IS
T 

pa
tie

nt
s.

It
e
m

T
ra

in
in

g
 S

e
t 

(n
=

1
0
7
)

t/
x
²/

Z
P

V
a
li

d
a

ti
o

n
 S

e
t 

(n
=

4
6

)
t/

x
²/

Z
P

G
IS

T
 (

n
=

7
7
)

N
o

n
-G

IS
T

 (
n

=
3
0
)

G
IS

T
 (

n
=

3
0

)
N

o
n

-G
IS

T
 (

n
=

1
6

)

G
e
n
d
e
r

-
-

0
.0

8
4

0
.7

7
1

-
-

0
.6

4
6

0
.4

2
1

M
a
le

3
1
 (

4
0
.2

6
)

1
3
 (

4
3
.3

3
)

-
-

11
 (

3
6
.6

7
)

4
 (

2
5

.0
0

)
-

-

F
e
m

a
le

4
6
 (

5
9
.7

4
)

1
7
 (

5
6
.6

7
)

-
-

1
9
 (

6
3
.3

3
)

1
2

 (
7

5
.0

0
)

-
-

A
g
e
 (

ye
a
rs

)
6
1
.2
±

1
.4

5
3
.6
±

2
.1

2
1
.7

4
7

＜
0
.0

0
1

6
3
.4
±

2
.2

5
4

.3
±

3
.6

1
0

.6
5

7
＜

0
.0

0
1

T
u
m

o
r 

L
o
ca

tio
n

-
-

1
3
.5

5
3

＜
0
.0

0
1

-
-

1
6

.8
9

3
＜

0
.0

0
1

S
to

m
a
ch

6
5
 (

8
4
.4

1
)

1
5
 (

5
0
.0

0
)

-
-

2
8
 (

9
3
.3

3
)

5
 (

3
1

.2
5

)
-

-

In
te

st
in

e
1
0
 (

1
2
.9

9
)

5
 (

1
6
.6

7
)

-
-

2
 (

6
.6

7
)

1
 (

6
.2

5
)

-
-

A
b
d
o
m

in
a
l c

a
vi

ty
2
 (

2
.6

0
)

1
 (

3
.3

3
)

-
-

0
 (

0
.0

0
)

1
 (

6
.2

5
)

-
-

R
e
tr

o
p
e
ri
to

n
e
u
m

0
 (

0
.0

0
)

8
 (

2
6
.6

7
)

-
-

0
 (

0
.0

0
)

2
 (

1
2

.5
0

)
-

-

P
e
lv

is
0
 (

0
.0

0
)

1
 (

3
.3

3
)

-
-

0
 (

0
.0

0
)

7
 (

4
3

.7
5

)
-

- (C
on

tin
ue

d)

9
93Hellenic Journal of Nuclear Medicine     May-August 2024•   www.nuclmed.gr 143

Research Article



M
a
xi

m
u
m

 D
ia

m
e
te

r 
(m

m
)

3
4
.2
±

5
.7

4
2
.3
±

4
.9

6
.8

5
4

＜
0
.0

0
1

3
8
.5
±

4
.6

5
2

.1
±

9
.2

6
.7

1
5

＜
0

.0
0

1

E
n
h
a
n
ce

m
e
n
t 

P
a
tt
e
rn

-
-

0
.2

2
9

0
.6

3
1

-
-

1
.9

3
2

0
.1

6
4

H
o
m

o
g
e
n
e
o
u
s

4
5
 (

5
8
.4

4
)

1
6
 (

5
3
.3

3
)

-
-

11
 (

3
6
.6

7
)

2
 (

1
2

.5
0

)
-

-

H
e
te

ro
g
e
n
e
o
u
s

3
2
 (

4
1
.5

6
)

1
4
 (

4
6
.6

7
)

-
-

1
9
 (

6
3
.3

3
)

1
4

 (
8

7
.5

0
)

-
-

C
a
lc

ifi
ca

tio
n

1
4
 (

1
8
.1

8
)

3
 (

1
0
.0

0
)

0
.5

5
5

0
.4

5
5

6
 (

2
0
.0

0
)

2
 (

1
2

.5
0

)
0

.0
5

3
0

.8
1

7

H
e
m

o
rr

h
a
g
e

2
 (

2
.6

0
)

4
 (

1
3
.3

3
)

2
.8

9
1

0
.0

8
9

0
 (

0
.0

0
)

1
 (

1
6

.2
5

)
-

1

E
n
h
a
n
ce

m
e
n
t 

D
e
g
re

e
-

-
4
.6

1
7

0
.0

3
1

-
-

1
.0

2
3

0
.3

11

M
ild

1
0
 (

1
2
.9

9
)

1
2
 (

4
0
.0

0
)

-
-

6
 (

2
0
.0

0
)

3
 (

1
8

.7
5

)
-

-

M
o
d
e
ra

te
2
1
 (

2
7
.2

7
)

7
 (

2
3
.3

3
)

-
-

1
0
 (

3
3
.3

3
)

8
 (

5
0

.0
0

)
-

-

M
a
rk

e
d

4
6
 (

5
9
.7

4
)

11
 (

3
6
.6

7
)

-
-

1
4
 (

4
6
.6

7
)

5
 (

3
1

.2
5

)
-

-

S
u
rf

a
ce

 U
lc

e
ra

tio
n

7
 (

9
.0

9
)

2
 (

6
.6

7
)

0
.0

0
0

0
.9

8
6

1
 (

3
.3

3
)

0
 (

0
.0

0
)

0
.0

0
0

1
.0

0
0

L
ym

p
h
a
d
e
n
o
p
a
th

y
4
 (

5
.1

9
)

1
 (

3
.3

3
)

0
.0

1
0

0
.9

2
0

0
 (

0
.0

0
)

0
 (

0
.0

0
)

0
.0

0
0

1
.0

0
0

93 Hellenic Journal of Nuclear Medicine     May-August 2024•   www.nuclmed.gr144

Research Article



3.2 Radiomics Feature Selection Results 
A total of 180 radiomics features were extracted using A.K 
software. Dimensionality reduction was performed on the 
high-dimensional data using LASSO regression, resulting in 
13 radiomics features. These features are MaxIntensity, Per-
centile85, RelativeDeviation, Cluster-Prominence_AllDirec-
tion_o�set1_SD, ClusterShade_angle45_o�set1, GLCMEn-
tropy_angle90_o�set1, LongRunEmphasis_angle0_o�set1, 
LongRunEmphasis_angle135_o�set1, LongRunEm-
phasis_angle45_o�set1, Long RunHighGreyLevelEm-
phasis_angle0_o�set1, LongRunLowGreyLevelEmpha-
sis_AllDirection_o�set1, Maximum3DDiameter, and Surfa-
ceVolumeRatio.

Radiomics prediction models 
Based on the selected 13 radiomics features, Logistic regres-
sion and Random Forest (RF) models were established. The 
AUC of the Logistic regression model for distinguishing GIST 
from non-GIST in the training set was 0.753, and 0.582 in the 
validation set (Figure 1). The AUC of the RF model was 0.941 
in the training set and 0.746 in the validation set (Figure 2). 
Comparison between the two groups showed that the diag-
nostic performance of the RF model was higher than that of 
the Logistic regression model (P<0.05) (Figure 3). Decision 
curve analysis showed that the net bene�t of the RF model 
for distinguishing GIST was higher than considering all pati-
ents as GIST or non-GIST, and also higher than the Logistic 
regression model (Figure 4).

Figure 1. ROC curve of logistic regression model for distinguishing GIST from non-GIST. Note: A (Training Set); B (Validation Set).

Figure 2. ROC Curve of RF model for distinguishing GIST from non-GIST. Note: A (Training Set); B (Validation Set).
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Discussion

Comparison of basic data between GIST and non-
GIST patients
In this study, the basic data of GIST and non-GIST patients 
showed signi�cant di�erences in several aspects, speci�cally 
analyzed as follows: 1) Age di�erence: This study found that 
the average age of onset for GIST was older than that for non-
GIST (P<0.05), consistent with previous studies [10]. Past re-
search [11] indicated that the median age of onset for GIST is 
around 60 years, whereas the age of onset for leiomyomas 
and neurogenic tumors is generally lower. This may be due to 
the pathological characteristics and biological behavior of 

GIST, making it more common in older populations. 2) Tumor 
size di�erence: In this study, the tumor size di�erence bet-
ween GIST and non-GIST patients was statistically signi�cant 
(P<0.05), similar to the �ndings of Brinch et al. (2022) [12], in-
dicating that GIST tumors are generally larger. However, ano-
ther study [13] stated that the mean diameter of GIST, leio-
myomas, and neurogenic tumors is similar with no statistical 
signi�cance (P>0.05). The di�erence in these results may be 
related to the di�erent proportions of non-GIST in the rese-
arch samples. Additionally, GIST typically shows rapid growth 
and strong invasiveness, which may explain its larger tumor 
volume [14]. 3) Tumor location di�erence: This study found 
that the tumor location distribution between GIST and non-
GIST patients was statistically signi�cant (P<0.05). Among 

Figure 3. ROC curve comparison between logistic regression model and RF model for distinguishing GIST from non-GIST. Note: RF represents the RF model; Log represents 
the Logistic regression model.

Figure 4. Decision curves of logistic regression model and RF model. Note: All represents all patients as GIST; None represents all patients as non-GIST.
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mesenchymal tumors of the gastrointestinal tract, GIST pre-
dominantly occurs in the stomach (65/77), followed by the 
intestine (10/77), while non-GIST predominantly occurs in 
the stomach (15/30), followed by the retroperitoneum (8/ 
30). This indicates that the tumor location can be an impor-
tant basis for distinguishing GIST from non-GIST. The high 
incidence of GIST in the stomach is closely related to its pat-
hological characteristics and the origin cells [15], while the 
higher incidence of non-GIST in the retroperitoneal area ref-
lects the di�erent tissue origins and growth characteristics 
of these tumors [16]. 4) Tumor enhancement feature di�e-
rence: This study showed that the tumor enhancement fe-
atures of GIST and non-GIST patients were signi�cantly dif-
ferent (P<0.05). GIST tumors in patients mainly showed mar-
ked enhancement (46/77), while non-GIST tumors primarily 
showed mild enhancement (12/30). This di�erence may ref-
lect the higher blood supply level and more active biological 
behavior of GIST. Previous studies [17] have also indicated 
that GIST typically has rich blood supply, showing signi�-
cant imaging enhancement characteristics, while neuro�b-
romas and other non-GIST tumors show more homogene-
ous tumors with lower enhancement levels. This di�erence 
can be used in imaging diagnosis to help di�erentiate GIST 
from other mesenchymal tumors.

Overall, this study, through detailed analysis of the basic 
data of GIST and non-GIST patients, con�rmed the impor-
tance of multiple imaging features in di�erential diagnosis. 
These �ndings not only provide new auxiliary tools for clini-
cal practice but also o�er important references for future re-
lated research.

Diagnostic performance of radiomics in di�erenti-
ating GIST from non-GIST
Radiomics technology, by high-throughput extraction of tu-
mor internal features, has shown great potential in the diag-
nosis, treatment, and prognostic assessment of tumors [18]. 
Although radiomics has been applied in GIST research, it has 
mainly focused on risk strati�cation and genetic mutation 
status of GIST [19, 20], with relatively few studies on distingu-
ishing between imaging-similar GIST, neuro�bromas, and le-
iomyomas. Existing studies primarily analyze CT imaging fe-
atures. For example, Choi et al. (2014) [21] used CT imaging 
features to di�erentiate GIST larger than 5cm from other me-
senchymal tumors, but these features mainly rely on subjec-
tive analysis by radiologists, with signi�cant inter-observer 
variability and a lack of objectivity. This study used radiomics 
methods, employing RF models and Logistic regression mo-
dels to di�erentiate GIST from non-GIST. The results showed 
that the RF model exhibited high diagnostic performance in 
both the training set and validation set (training set AUC= 
0.941, validation set AUC=0.746), while the Logistic regres-
sion model had decent diagnostic performance in the tra-
ining set (AUC=0.753), but poorer performance in the valida-
tion set (AUC=0.582). This di�erence indicates that the RF 
model has better stability and adaptability in handling high-
dimensional radiomics features and complex data distur-
bances. Decision curve analysis further showed that when 
the probability threshold was 20% to 90%, the net bene�t of 
the RF model in distinguishing GIST was signi�cantly higher 
than considering all patients as GIST or non-GIST and also 

higher than the Logistic regression model. This means that 
the RF model not only has higher discriminatory power sta-
tistically but also has greater practical value in clinical appli-
cations.

Existing literature also supports the superiority of the RF 
model in radiomics applications. For instance, Parmar et al. 
(2015) [22] and others used 12 machine learning models to 
predict the overall survival rate of lung cancer, showing that 
the RF-based machine learning model achieved the highest 
predictive performance (AUC=0.66±0.03). Additionally, 
Wang et al. (2020) [23] in their MRI radiomics study, using fo-
ur feature selection methods and three machine learning 
models to di�erentiate the malignancy of soft tissue masses, 
found that LASSO regression feature selection combined 
with the RF model showed the highest AUC in two validation 
cohorts (0.86 and 0.82, respectively). These results are consis-
tent with those of this study, further validating the e�ective-
ness and stability of the RF model in radiomics analysis. As a 
powerful and �exible machine learning algorithm, RF can 
handle high-dimensional data and complex feature interac-
tions, making it particularly suitable for feature selection and 
analysis in radiomics. Its stability in handling data disturban-
ces makes it an ideal choice for radiomics-based predictive 
research.

In summary, this study successfully established an e�cient 
model for di�erentiating GIST from non-GIST using radio-
mics technology and machine learning algorithms. The RF 
model performed excellently in handling high-dimensional 
imaging data and complex features, signi�cantly out-
performing the traditional Logistic regression model. This 
not only provides a new and e�ective auxiliary diagnostic to-
ol for clinical practice but also o�ers important references for 
future applications of radiomics in tumor di�erential diag-
nosis. Future research should further validate the stability 
and generalizability of the RF model in larger sample sizes 
and multi-center data to promote the wide application of ra-
diomics technology in clinical diagnosis.

In conclusion, the machine learning model based on radio-
mics features has good diagnostic value in predicting GIST 
and other mesenchymal tumor pathological subtypes, with 
the RF model showing superior diagnostic value compared 
to the Logistic regression model. However, it is also neces-
sary to note some shortcomings in this study that need im-
provement, such as: 1) Small sample size: The sample size of 
this study is relatively small, which may a�ect the credibility 
and applicability of the results and limit the statistical signi�-
cance of some results. 2) Retrospective analysis: This study 
used retrospective analysis, which may have information bi-
as and treatment selection bias. 3) Single-center study: This 
study was conducted in only one hospital, which may limit 
the external applicability of the research results. 4) Manual 
segmentation errors: All ROI in this study were manually deli-
neated, inevitably introducing some potential human errors. 
Therefore, in future research, we will enhance the study de-
sign and results by increasing the sample size and improving 
the study design to further enhance the scienti�c and prac-
tical aspects of the research.
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