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AI potential in PET/CT cancer imaging

Abstract
Positron emission tomography/computed tomography (PET/CT) is a hybrid medical imaging technique 
that combines PET and CT to provide detailed images of the body's anatomical structures and metabolic ac-
tivity. It is frequently used for oncology and other medical diagnoses. This overview aims to examine how ar-
ti�cial intelligence (AI) has been used in PET/CT, based on recent state-of-art.  There are a number of clinical 
questions in Nuclear Medicine, and AI could provide answers, having the capability to enhance various as-
pects of medical imaging. The overview focuses on how machine learning (ML) and deep learning (DL), en-
hance tumor segmentation, classi�cation, diagnosis, disease-free survival prediction and treatment res-
ponse prediction in oncology. The analysis showed that the application of AI provides reliable results, es-
pecially in the �elds of classi�cation and diagnosis. In addition, radiomics is a novel research �eld enabling 
quantitative analysis of medical images through feature extraction, utilized for AI model implementation.  
Despite these advances, addressing issues such as dataset size, standardization, and ethical concerns are es-
sential for broad clinical integration of AI in PET/CT oncology imaging. 
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Introduction

Positron emission tomography (PET) is a three-dimensional (3D) functional ima-
ging modality that can o�er important insights into the diagnosis and treatment 
of cancer patients [1, 2]. It involves visualizing the bio-distribution of radiophar-

maceuticals labeled with positron-emitting radionuclides and diagnosing physiologi-
cal/pathological conditions [3, 4]. It provides the ability to examine various changes in 
metabolism, blood �ow, and regional chemical composition [4]. Researchers now have a 
better understanding of the metabolic and molecular processes involved in the disease 
thanks to the radiopharmaceuticals used in PET. As a result, PET is now a molecular ima-
ging technique that examines biochemical processes at the molecular level [4]. Positron 
emission tomography imaging has been used in many di�erent types of malignant dise-
ases due to the bene�ts of revealing tumor cells' functional status and molecular expres-
sion [5].

On the other hand, computed tomography (CT) scans are produced by converting 
electrical energy (moving electrons) into X-rays photons, sending them through the tar-
get being examined, measuring the photons, and then converting the electrons from 
measured photons. The degree of penetration depends on its density. X-rays beams pas-
sing through an anatomy section can reveal information about that area. The CT image 
is then computationally reconstructed by the collected data [6].

In the �eld of medical diagnostics, healthcare professionals can take advantage of 
both techniques, PET and CT, by combining PET and CT scans into a single image exami-
nation, as PET/CT, allowing a more thorough examination of various diseases, particu-
larly cancer [7]. By combining the data, CT and PET can both highlight areas of abnormal 
metabolism and localize functional abnormalities precisely [8] and this process is known 
as hybrid imaging [9].

Nuclear medicine imaging, and therefore PET/CT imaging, does have some well-
known drawbacks, which limit its clinical use. Despite the diagnostic value of PET/CT, 
challenges such as interobserver variability, large data processing, and lack of time have 
led to increased interest in the use of arti�cial intelligence (AI) in the �eld of medical ima-
ging. Arti�cial intelligence and PET imaging may be able to help physicians to manage 
their patients in a signi�cant way [9-11]. However, the ethical deployment and utilization

93 Hellenic Journal of Nuclear Medicine     September-December 2024•   www.nuclmed.gr212

Review Article



of AI in healthcare necessitates consideration of ethical is-
sues and data privacy concerns [11].

However, the increasing amount of medical imaging data 
also presents a challenge for accurate and e�cient analysis. 
Herein lies the potential utility of AI [11].

When it comes to using PET imaging, there are a few con-
straints. Firstly, there are not enough tools for evaluating 
functions and describing PET images. Currently, the main 
methods used to describe the functional status are semi-qu-
antitative parameters. Among them, maximum standar-
dized uptake value (SUVmax) and mean SUV (SUVmean) are 
frequently used in clinical applications. They have a relation-
ship with tumor grade and stage, and they are clinically use-
ful for predicting prognosis and therapy response. This cor-
relation is not widely accepted, and some studies continue 
to show dubious �ndings [12].

There is no standard cut-o� value of semi-quantitative pa-
rameters to divide benign and malignant lesions. Additio-
nally, inter-acquisition variation a�ects the stability of value. 
Semi-quantitative parameters cannot e�ectively extract in-
formation from PET images [5]. When it comes to diagnostic 
choices, given its complexity and heterogeneity, cancer is a 
condition that requires a precise diagnosis and treatment 
strategy. The detection, staging, and monitoring of tumors 
using PET/CT imaging are crucial for the management of 
cancer [13]. The integration of functional and anatomical in-
formation from PET/CT scans enables clinicians to evaluate 
tumor activity, identify potential metastases, and evaluate 
treatment e�ectiveness [14]. When it comes to diagnostic 
choices, given its complexity and heterogeneity, cancer is a 
condition that requires a precise diagnosis and treatment 
strategy. The detection, staging, and monitoring of tumors 
using PET/CT imaging are crucial for the management of 
cancer. The integration of functional and anatomical infor-
mation from PET/CT scans enables clinicians to evaluate tu-
mor activity, identify potential metastases, and evaluate tre-
atment e�ectiveness [12]. However, the increasing amount 
of medical imaging data also presents a signi�cant challen-
ge for accurate and e�cient analysis. Herein lies the poten-
tial utility of AI [13].

Arti�cial intelligence is the science of creating algorithms 
that can learn from data to solve speci�c problems. Altho-
ugh it is associated with the task of employing computers to 
comprehend human intelligence, AI does not need to be li-
mited to techniques that can be observed biologically [15].

Several aspects of medical imaging can be enhanced by 
AI. In addition to improving quality assessment, it can also 
be useful in post-processing techniques like tumor deline-
ation, registration, and quanti�cation and clinical decision 
support [2, 16]. Additionally, it can contribute to the optimi-
zation of dose estimation, automating abnormality detec-
tion, comparing with earlier examinations, and evaluating 
therapeutic response, interpreting and generating reports, 
and correlating �ndings with other clinical data [2, 16]. All 
the aforementioned are bene�ts of AI for PET/CT as a diag-
nostic imaging modality. Thus, the procedure will be more 
precise and faster [2].

Tumor characterization and image analysis have under-
gone radical changes as a result of the signi�cant advance-
ments in AI techniques, including machine learning and de-

ep learning [17]. This has resulted in remarkably better 
healthcare outcomes [18].

This overview intends to investigate how AI has been ap-
plied in order to address the main challenges related to PET/ 
CT, with a focus on cancer imaging. The bene�ts from using 
AI in medical images presented include improvements in 
segmentation, classi�cation, diagnosis, disease-free survi-
val prediction, and treatment response prediction in the �-
eld of oncology. 

Background concepts: Machine learning 
techniques for PET/CT analysis

Background of AI and terminology 
Arti�cial intelligence focuses on creating systems and tech-
nologies that can perform tasks that typically demand hu-
man-like intelligence. These tasks can include problem sol-
ving, reading, reasoning, natural language processing, pat-
tern recognition, and decision making [2, 16, 19]. Machine 
learning (ML) is a subset of AI that consists of multiple algo-
rithms that allow computers to automatically perform these 
tasks. Machine learning involves developing algorithms and 
models that allow machines to learn from data. Machine le-
arning systems are trained on large data sets and use statis-
tical techniques to make predictions or decisions based on 
patterns and in-sights from that data [20].

Building an ML model requires several important steps 
and considerations, including the use of the training set, tes-
ting and validation, and the methods used to report the mo-
del's success. The training set is used to train the model. Al-
gorithms learn how to make predictions or classify data ba-
sed on this data set. The purpose of validation is to provide 
an objective assessment of the model's performance during 
training. Testing sets are used to evaluate the performance 
of a fully developed model and provide an objective asses-
sment of its e�ectiveness [21].   

Supervised learning refers to a category of ML where an 
algorithm is trained on a labeled dataset, meaning that each 
input in the training data is associated with the correspon-
ding correct output. The objective is to teach the model to 
map inputs to outputs so that it can make accurate predic-
tions on new data. Support vector machines (SVM) are a su-
pervised machine learning algorithm used for classi�cation 
and regression tasks. It identi�es the optimal hyperplane in 
the feature space to e�ectively separate di�erent classes 
[14]. Random forests, on the other hand, is an algorithm that 
constructs multiple decision trees during training and com-
bines them for more precise and stable predictions [22].

Semi-supervised learning entails training a model on a da-
taset that includes both labeled and unlabeled examples. 
This approach is valuable when labeling data is time-con-
suming. Leveraging unlabeled data in can enhance the over-
all performance of the model [23].

Unsupervised learning uses ML algorithms to analyze and 
cluster unlabeled data sets. These algorithms are ideal for 
data exploration and image recognition [24].

Machine learning algorithms are mostly applied to extrac-
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ted features (agnostic and/or semantic) with feature selec-
tion or dimensionally reduction and regression or classi�ca-
tion steps. Deep learning (DL) is a subset of ML algorithms 
that performs not only all these ML steps (feature selection, 
dimensionally reduction, regression, or classi�cation) but al-
so features extraction in within the same framework [25, 26]. 
Deep learning is a sub�eld of machine learning that focuses 
on arti�cial neural networks inspired by the structure and 
function of the human brain. Deep learning has received 
much attention for its ability to solve problems such as ima-
ge recognition, natural language processing, and autono-
mous decision making [27]. Deep learning is regarded as 
representation learning, which entails a collection of tech-
niques that would allow a machine to be fed raw data and 
automatically identify the representation it needs for classi-
�cation [28].

A convolutional neural network (CNN) is a specialized arti-
�cial neural network designed for the analysis and proces-
sing of visual data, particularly images. Convolutional neural 
networks utilize convolutional layers to autonomously learn 
and adaptively discern spatial hierarchies of features from 
the input data [29].

An auto-encoder is an arti�cial neural network employed 
in unsupervised learning. It comprises an encoder network 
that condenses the input data into a lower-dimensional rep-
resentation (encoding), and a decoder network that recon-
structs the input data from this encoding. Auto-encoders 
�nd applications in data compression, feature learning, and 
anomaly detection [30].

Transformers refer to a neural network architecture. They 
have gained widespread use in natural language processing 
(NLP) tasks, relying on mechanisms to process input data in 
parallel [31].

Reinforcement learning is a machine learning training 
method where an agent learns decision-making by interact-
ing with an environment and receiving feedback in the form 
of rewards or penalties based on its actions [32].

Generative adversarial networks (GAN) are a class of 
machine learning models that consist of a generator and a 
discriminator, trained simultaneously through adversarial 
training. The generator produces synthetic data, and the dis-
criminator evaluates the authenticity of the generated data. 
This iterative process continues until the generator pro-
duces data indistinguishable from real data [33].

Radiomics analysis
Radiomics is a term used to describe the high-capacity ex-
traction, and analysis of numerous features from medical 
images. It is believed that medical images contain more in-
formation than the human eye can perceive, and that addi-
tional information may supplement the usual descriptive 
data available to health professionals [34].

Radiomics deals with the extraction of speci�c image fe-
atures that enable the automated classi�cation of medical 
images into speci�c categories [35]. Using quantitative in-
dices derived from statistical and mathematical models ap-
plied to the images, radiomic features enable the descri-
ption of structural heterogeneity of tissues, particularly re-
ferred to tumors [36]. 

Radiomics evaluate size, shape, and texture features that 

contain valuable spatial information about the distribution 
and pixel or voxel patterns as part of its analysis. These radio-
mics features are used to build predictive models for many 
di�erent organs and systems, to order to support individu-
alized diagnosis and treatment [37]. 

The radiomics image processing work�ow entails a series 
of sequential steps. Starting from image acquisition and 
preprocessing, segmentation of the desired region of in-
terest takes place, a process that is typically done manually. 
Then follows the calculation of de�ned radiomics features 
and creation of the classi�cation model [37].

A. From raw data to segmentation: The medical image 
serves as the starting point for the radiomic work�ow. A data 
set's pixel intensities are distributed uniformly and within a 
predetermined range using normalization techniques [38, 
39]. The information that can be extracted is then limited to 
that which is relevant to the lesion, and this limited set of re-
levant information is referred to as the region of interest 
(ROI). Both in two dimensions and three dimensions, there 
are competing techniques for feature extraction.   

The manual segmentation of the lesion can be accompli-
shed using automated segmentation algorithms. Deep lear-
ning architectures like U-Net or semi-automatic techniques 
like click-and-grow algorithms are two examples of automa-
ted segmentation techniques [39, 40].

B. Calculating the radiomics features: Once the ROI has 
been established, the information sought will determine 
which features should be extracted. Shape features like vo-
lume only a�ect how the ROI is de�ned, and if this is done 
manually, there will be inter- and intra-observer variation. 
Variance, skewness, and kurtosis are just a few of the stati-
stical techniques used to quantify the pixel intensity histo-
grams. However, the positioning of pixels in relation to one 
another cannot be measured by these features. This relati-
onship may be captured by second and higher order featu-
res, with second order features based on the average relati-
onship between two pixels/voxels and higher order features 
for more than two pixels/voxels. The grey level co-occurring 
matrix (GLCM) is a prime example of a second-order feature 
extraction approach. The GLCM can then be used to extract 
independent features using customized formula and statis-
tical analysis. As they are prede�ned by specially created for-
mula, features extracted in this way are referred to as "hand-
crafted" features. One must choose the subset of them that 
will be used in the �nal model [39].

C. Radiomics challenges. Although, the repeatability, re-
producibility, and transferability of radiomics features, des-
pite the promising results and the potential of radiomics, is 
still a problem and frequently depends on the image charac-
teristics. The extraction of radiomics features from multiple 
image acquisitions made with identical or nearly identical 
acquisition and processing parameters is a common met-
hod for evaluating repeatability. On the other hand, repro-
ducibility of radiomics features, also known as robustness, is 
assessed when the measurement systems and acquisition 
parameters are di�erent [41].

Machine learning and deep learning for medical ima-
ging
By automating some tasks and assisting imagers in their de-
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cision-making, AI has the potential to improve the accuracy, 
e�cacy, and reproducibility of PET/CT image analysis [42]. 
Machine learning algorithms are thought to automatically 
spot patterns and extract desirable representations from un-
structured data [43, 44]. Machine learning algorithms are 
mos-tly applied to extracted features with feature selection 
or dimensionally reduction [25, 26]. Some common algorit-
hms and methods that are used in the �eld of medical ima-
ging are linear or logistic regression, decision trees and ran-
dom forests, support vector machines [45]. 

Deep learning has shown promising results in a number of 
problems related to nuclear medicine, and various DL algo-
rithms have been proposed and used [44, 46, 47]. Convolu-
tional neural networks and GAN are among the DL algorit-
hms used in nuclear medicine [25, 44, 48, 49] that have been 
used to recover low-quality images and produce high-quality 
images in the domain of medical imaging [50, 51].

As a method for understanding medical images, CNN has 
grown to be a potent option. Numerous medical images un-
derstanding applications have all been successfully imple-
mented using CNN [52].

Generative adversarial networks are able to produce re-
alistic images. They are the �rst deep generative models to be 
extensively used for medical image augmentation [53].  

Moreover, applications of AI-based algorithms in PET ima-
ging span from internal dosimetry at the highest levels to 
low-level electronic signal formation and processing, as well 
as diagnostic and prognostic modeling [44]. Deep learning 
strategies have been primarily used in instrumentation ad-
vancements to increase the timing resolution and localiza-
tion accuracy of incident photons with the goal of improving 
the overall spatial and time-of-�ight (TOF) resolutions in PET. 
With the rapid emergence of DL algorithms, image recon-
struction algorithms are being reexamined. In these algo-
rithms, ML models take the place of either all of the analytical 
models used in the image reconstruction process or certain 
crucial components [44].

Quality optimization for low-quality images is one of the 
main uses of DL in PET image reconstruction. The injection 
dose should be as low as possible to reduce radiation expo-
sure to the examinee and medical personnel. Reducing the 
injection dose, however, worsens the image quality and in-
creases noise in the PET acquisition data [51, 54, 55].   

Recently, PET hardware has improved [51, 54, 55], and re-
construction has allowed us to lower the dose while pre-
serving image quality [51, 56, 57]. However, there is still a si-
zable radiation exposure from PET scans [51]. The overall qu-
ality of PET scan subjects can still be improved with the use of 
strategies to mitigate the noise brought on by lowering the 

injection dose [51].

Methodology of literature search

A literature search was performed in order to provide an over-
view of how computational analysis and AI have been appli-
ed to PET/CT data in order to address the main challenges re-
lated to this type of hybrid imaging data. The selection of key-
words ensured the thorough retrieval of research spanning 
the interdisciplinary �eld of medical image analysis. The me-
thodology employed for conducting the literature search 
used the following keywords: arti�cial intelligence (AI), can-
cer, deep learning (DL), machine learning (ML), positron emis-
sion tomography (PET), positron emission tomography/com-
puted tomography (PET/CT), radiomics. It is important to no-
te that the �radiomics� keyword was employed because many 
ML research works were based on radiomics. The search ai-
med to �nd pertinent research papers and studies in the area. 

The academic databases included in the search were 
PubMed, IEEE Xplore, and Google Scholar. These databases 
were chosen due to their coverage of technical and medical 
literature. The studies that were included covered the use of 
AI algorithms in medical image analysis.

The following queries were used for the literature search:

 ((AI)OR(machine learning)OR(deep learning))AND 
(cancer) AND(PET-CT) AND (radiomics) (Query 1)

 (((AI)OR(machine learning)OR (deep lear-ning)OR (ra-
diomics))AND(cancer) AND(PET-CT))AND(classi�ca-
tion)AND(free full text[Filter]))AND(review[Publication 
Type]) (Query 2)

The initial query was employed to explore and assess the 
scope of existing research within the �eld under examina-
tion. In the �rst query, "radiomics" is a mandatory term, requ-
ired in all search results. In the second query, "radiomics" is 
an optional term, in order to also search for studies that do 
not use radiomics.  In addition, the application of the second 
query was intended to incorporate review articles into the 
overview, because of the scarcity of original research articles 
(not review articles) that delved into the intersection of AI 
and classi�cation.

The two queries returned the following number of artic-
led: Query 1: 322 and Query 2: 14. Then the research was limi-
ted to the articles published over the past six years (2018-20-
23), resulting in a decrease in the volume of the obtained ar-
ticles (Query 1: 318 and Query 2: 13). The reason for this limi-

Figure 1. Radiomics image processing work�ow.



tation in article selection is due to the fact that AI has a signi-
�cant development in recent years, necessitating the inclu-
sion of more recent studies in the overview. Firstly, the abs-
tracts were reviewed for relevance to the study goals, and 
certain articles were excluded in order to focus on those that 
align with AI models applied to PET/CT scans. Secondly, ad-
ditional articles were excluded due to overlaps between the 
two queries. Consequently, this process resulted in the �nal 
collection of 12 articles (8 original articles form the Query 1 
and 4 studies included in 1 review from Query 2.

Challenges of �� in cancer research
This overview investigates the intersection of AI and cancer 
research, using information from 12 studies, of which 8 were 
original research articles and the remaining 4 were studies 
derived from one review article. The studies covered the fol-
lowing clinical questions: segmentation, classi�cation, diag-
nosis, disease-free survival prediction, and treatment respon-
se. Table 1 presents and organizes the essential information 
from the 8 studies pertaining to all previously mentioned qu-
estions, with the exception of classi�cation. This exclusion is 
due to the fact that the percentages below pertain to the ori-
ginal research articles. In subsequent sections, more detailed 
information on these studies will be presented.

Automated segmentation
Segmentation can be done by drawing ROI on the tumor, tu-
mor subregions (also known as �habitats�), or peritumoral 

zones [58]. For larger datasets where manual segmentation is 
not practical, automatic segmentation may be necessary [59, 
60] because it is potentially faster and more reproducible. To 
make sure segmentations are accurate, a radiologist should 
review them. When manual segmentation is employed, fe-
ature stability should be evaluated by performing numerous 
delineations of the same tumor [60].

Ghezzo et al. (2023) study was about a convolutional ne-
ural network for the automatic segmentation of intrapros-
tatic cancer lesions which was tested on 39 patients' PET/CT 
images [61].

In another study of Gu et al. (2023), a deep multi-task sur-
vival model (DeepMTS) was developed for tumor segmen-

18tation from �uorine-18-�uorodeoxyglucose ( F-FDG) PET/ 
CT images. The preprocessed PET and CT images were com-
bined and sent as input to DeepMTS, and the original manu-
al tumor segmentation mask was used as the ground truth 
label for training only. DeepMTS is a CNN consisting of a Un-
et-based segmentation backbone and a DenseNet-based 
cascading survival network (CSN) [62].

After training, DeepMTS can predict the segmentation 
mask of the tumor region. For tumor segmentation, Deep 
MTS achieves dimensional similarity coe�cients (DSC) of 
0.826, 0.775, and 0.765 for the training, internal validation, 
and external validation cohorts, respectively, demonstrating 
high agreement with manually segmented segmentation 
masks. Automatic segmentation has been reported to 
increase objectivity and signi�cantly improve prediction per-

Figure 2. Flow chart of article selection process

Table 1. Key information of the overview: insights from 8 studies.

AI subset ML: 62.5% DL: 37.5%

Radiomics 
utilization

Yes: 87.5 % No: 12.5%

Cancer type Lung cancer: 37.5%
Prostate cancer: 
25%

Cervical cancer: 25%
Νasopharyngeal carcinoma: 
12.5%

Clinical 
question

Segmentation: 25% Diagnosis: 25%
Disease-free survival 
prediction: 25%

Treatment response: 25%
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formance compared to manual segmentation [62].

Classi�cation of lesions
Classi�cation is the categorization of a population [63]. The 
choice of classi�cation algorithm signi�cantly impacts the va-
riability in the predictive performance of machine learning 
models [64]. Predictive models use clinical outcomes to gro-
up patients into various risk groups based on the likelihood 
that clinical outcomes, such as overall or disease-free survival, 
will occur. These risk groups are then evaluated using a time-
to-event analysis. The idea that radiomic data provide infor-
mation about tumor biology informs these applications [63].

At Moazemi et al. (2021) study, 5 di�erent ML models have 
been tested for classi�cation of lesions in patients that had 
been treated for either localized or metastasized prostate 
cancer and referred for a follow-up PET/CT. Lesions were deli-
neated by physicians and features (from PET and from CT) 
were calculated from each lesion and utilized in each algorit-
hm, with an ExtraTrees classi�er showing the best results 

(AUC 0.98, sensitivity 94%, and speci�city 89%). The results 
showed that the combination of PET and CT features greatly 
improved the classi�cation accuracy [65].

In a similar study, Erle et al. (2021) tested three di�erent ML 
radiomics models based on support vector machine, Extra-
Trees and random forest models, respectively. The aim of the 
study was the classi�cation between malignant and physiolo-
gical �ndings. A lot of hotspots were delineated and marked 
either as malignant or physiological. The ExtraTree classi�er 
showed the best results [66].

Leung et al. (2022) study developed a radiomics model for 
classi�cation in prostate cancer cases. A deep learning appro-
ach was used for automated segmentation of lesions and ex-
tracting features (AUC 0.90) [67].

The study of Zang et al. (2022) developed a radiomics mo-
del for classi�cation of malignant and benign �ndings at pros-
tate disease. For the purpose of the study, they developed a 
radiomics model score constructed by a linear combination 
of coe�cients from a selection of radiomic features [68].

Table 2. Performance of studies for segmentation.

Study
# of 

patients 
Cancer type

Radiopharma-
ceutical

Assessment measures
AI 

subset
Radiomics 
utilization

Ghezzo 
et al. [61]

39 Prostate cancer 68Ga-PSMA Median dice score = 0.74 DL No

Gu et al. 
[62]

886
Nasopharyngea

l carcinoma
18F-FDG

DSC = 0.826 (for the 
training)

DSC = 0.775 (for the internal 
validation)

DSC = 0.765 (for the 
external validation)

DL Yes

Table 3. Performance of studies for classi�cation. 

Study 
# of 

patients
Cancer 

type
Radiopharm

a-ceutical
Classes

# of 
models 

AUC of the 
model with 

the best 
results

AI 
sub-
set

Radiomics 
utilization

Moazemi 
et al. [65]

72
Prostate 
cancer

68Ga-PSMA
localized and 
metastasized 

prostate cancer
5 0.98 ML Yes

Erle et 
al. [66]

72
Prostate 
cancer

68Ga-PSMA
malignant and 
physiological 

findings
3 0.95 ML Yes

Leung et 
al. [67]

214
Prostate 
cancer

18F-DCFPyL
benign and 
malignant 
findings

1 0.90 DL Yes

Zang et 
al. [68]

123
Prostate 
cancer

68Ga-PSMA
prostate cancer 

and benign 
prostate disease

1 0.85 ML Yes



Diagnosis 
Arti�cial intelligence is capable of combining data from vari-
ous sources to create an integrated diagnosis [69].  According 
to the study of Tong et al. (2022) when combined with clinical 
traits from non-small cell lung cancer (NSCLC) patients, PET/ 
CT radiomics data can been used to evaluate tumor immune 
microenvironment (TIME) pro�les [70]. For the purpose of 
analyzing TIME pro�les in NSCLC, radiomics models (PET/CT, 
PET, and CT radiomics models) need to be created. Then, a 
multivariate logistic regression model (combined model) is 
constructed using the Rad-score and clinical features, and 
eventually, a predictive nomogram has to be developed to 
create a risk-scoring model. Using calibration curves, the no-
mogram's calibration is evaluated. The receiver operating 
characteristic (ROC) curve can be used to assess how well the 
models perform as diagnostic tools for predicting TIME pro-
�les of NSCLC [70]. The results showed that the combined 
model performed better, than both the clinical model and the 
radiomics model in terms of accurately predicting TIME status 
in NSCLC [70].

Yan et al. (2020) developed a diagnostic model for histolo-
gical subtypes in lung cancer by combining CT and PET ima-
ging data. The study used an ML approach on 445 patients. 
The outcomes to be predicted were primary, metastases, ade-
nocarcinoma, and squamous cell carcinoma [70].

Disease-free survival prediction 
The probability of successful cancer treatment signi�cantly 
improves with early diagnosis and prognosis [71]. Arti�cial 
intelligence can be used for predicting disease-free survival 
of early-stage uterine cervical squamous cancer. At Liu et al. 
(2022) study, the ROI of images is independently de�ned by 
nuclear medicine doctors. Following manual segmentation, 

the PyRadiomics package [73] can be used to automatically 
determine the radiomic features from tumor ROI, including 
shape, intensity, and texture [74].

At this study, the training set undergoes the three steps 
below for the selection of radiomic features. In order to as-
sess the prognostic potential of each feature individually, the 
concordance index (C-index) can be used. A low C-index de-
notes a feature's poor prognostic predictive power. Low-C-
index features should be eliminated. The variance in�ation 
factor (VIF) can be used to quantify feature collinearity and 
eliminate redundancy from large number of features [75]. 
The feature with the highest VIF score ought to be eliminated 
after each iteration. Third, a multivariate analysis using the 
random survival forest (RSF) model is possible [74].

Strong discrimination was produced by the PET/CT radio-
mic model compared to the clinicopathologic model (0.9125 
for the training set and 0.9019 for the testing set), with C-in-
dex values of 0.9557 for the training set and 0.9338 for the tes-
ting set. A comprehensive model was further developed by 
combining the radiomic and clinicopathologic features, and 
it achieved C-index values of 0.9717 and 0.9527 for the train-
ing and testing sets, respectively [74].

In another study (Ferreira et al. (2021)), one hundred �fty-
eight patients with locally advanced cervical cancer (LACC) 
from multiple centers were retrospectively included. Tumor 
segmentation was performed using the fuzzy local adaptive 
bayesian (FLAB) algorithm. Radiomic features were extrac-
ted from the tumors and from regions drawn over the nor-
mal liver from PET images of cervical cancer and evaluated 
the performance of di�erent classi�ers together with di�e-
rent feature selection (FS) methods. As a result, we obtain an 
AUC of 0.56 for the best tumor-to-liver ratio (TLR) model [76].

Table 4. Performance of studies for diagnosis.

Study 
# of 

patients
Cancer 

type
Radiopharma-

ceutical
# of 

models 
AUC of the model 

with the best results
AI 

subset
Radiomics 
utilization

Tong et 
al. [70].

221
Lung 

Cancer
18F-FDG 3 0.920 ML Yes

Yan et al. 
[71].

445
Lung 

cancer
18F-FDG 1

0.90 (for CT-based 
radiomics) 

0.95 (for PET-based 
radiomics)

ML Yes

Table 5. Performance of studies for disease-free survival prediction.

Model with 
the best 
results

# of 
patients

Cancer 
type

Radiopharma-
ceutical

AUC of the model AI subset
Radiomics 
utilization

Liu et al. 
[74].

201
Cervical 
cancer

18F-FDG
0.9527 (for 

combined model) 
ML Yes

Ferreira et al. 
[76].

158
Cervical 
cancer

18F-FDG 0.56 ML Yes
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Treatment response
Another study (Moazemi et al. (2021)) aimed to use a ML met-
hod to investigate the role of radiomic signatures in PSMA-
PET/CT scans and clinical parameters to predict response to 

177lutetium-177-prostate-speci�c membrane antigen ( Lu-
PSMA) treatment. The AUC for the task of predicting treat-
ment response was 0.8 [77].

Expanding on the signi�cance of radiomic features, a note-
worthy case highlighting their utilization in treatment deci-
sion making comes from the development of a PET/CT-based 
DL model in a prior study (Mu et al. (2020)). This model repre-
sents an additional advancement in treatment response pre-
diction. This model was capable of accurately classifying the 
presence of EGFR mutations by integrating radiomics featu-
res [78]. A test cohort was employed in order to assess the ef-
fectiveness of the EGFR prediction model [78].

Discussion 

The diagnosis and treatment of cancer patients could be gre-
atly improved by incorporating AI into PET/CT imaging. AI 
methods can improve several PET/CT imaging processes, in-
cluding image acquisition, quality evaluation, post-proces-
sing, and clinical decision support. AI algorithms can help 
PET/CT imaging become more accurate, e�ective, and ca-
pable of o�ering useful insights into tumor characteristics 
and treatment responses.

In the article, an overview of the bibliography was conduc-
ted in order to examine how AI has been used in PET/CT. This 
process resulted in the �nal collection of 12 articles (8 origi-
nal research articles and 4 studies from one review article). It 
is discussed how AI is being used for segmentation, classi�-
cation, diagnosis, disease-free survival prediction and treat-
ment response prediction using PET/CT images for diverse 
types of cancer. 

It appears that DFCN is a viable method for enhancing tu-
mor segmentation accuracy in research and clinical settings, 
especially when using both PET and CT data. In addition to 

18this, a DeepMTS model for tumor segmentation in F-FDG 
PET/CT images demonstrates its e�ectiveness for automa-

ting tumor segmentation.
For the purpose of better lesion classi�cation in patients, 

ExtraTrees can be an accurate classi�er. The �ndings show 
that radiomics and machine learning have the potential to 
improve cancer lesion classi�cation.

Arti�cial intelligence is also signi�cantly enhancing heal-
thcare in the �eld of cancer diagnosis. Moreover, the high 
AUC of the Random Forest model based on the top predic-
tive features indicates its potential as a valuable tool to ad-
vance prostate cancer diagnosis by identifying previously 
overlooked tumor tissue. 

Combining radiomic and clinical data increases predictive 
accuracy. Concurrently, the FLAB algorithm contributes to 
the prediction of disease-free survival through the utiliza-
tion of radiomic features.

The analysis indicates that the application of AI in the do-
mains of classi�cation and diagnosis provides reliable re-
sults. Additionally, the majority of these studies employ ML 
techniques instead of DL. Also, radiomics utilization is obser-
ved in most of these studies.

Combining radiomic features from multiple imaging mo-
dalities enhances predictive models for treatment response. 
These �ndings demonstrate the multimodality approaches' 
superior performance. Simultaneously, the application of a 
ML method utilizing radiomic signatures from PET/CT scans, 
in combination with clinical parameters, demonstrates pro-
mising predictive capabilities for treatment response.

Another observation that emerges from these studies is 
the predominant utilization of image-based data as oppo-
sed to clinical data. The preponderance of the research works 
examined in this overview is centered on image-based infor-
mation, highlighting a notable emphasis on visual diagnos-
tic modalities.

The �ndings of this study highlight the signi�cance of AI in 
improving cancer management by providing clinicians with 
useful tools to improve early diagnosis, forecast patient out-
comes, and o�er individualized treatment plans. As these 
technologies continue to evolve, there is a great chance that 
they will be widely used in clinical practice.

Although the results of applying AI to PET/CT imaging ha-
ve been encouraging, there are still many problems to be �-
xed and actions to be taken. Integrating AI into clinical prac-
tice has di�culties. A large number of features for each in-

Table 6. Performance of studies for treatment response prediction.

Study
# of 

patients
Cancer 

type
Radiopharma-

ceutical
Assessment measures

AI 
subset

Radiomics 
utilization

Moazemi 
et al. [77]

83
Prostate 
cancer

177Lu-PSMA AUC = 0.8 ML Yes

Mu et al. 
[78]

73
Lung 

cancer
18F-FDG

AUC = 0.86(for training)
AUC= 0.83(for internal 

validation)
AUC= 0.81(for external 

validation)

DL Yes



stance in the dataset must be handled in many machine le-
arning applications. Working with a large number of featu-
res may present some challenges because of the slower tra-
ining and increased risk of over�tting. Over�tting is a mode-
ling error where a machine learning algorithm learns the 
training data too well, capturing noise and speci�c patterns 
that do not generalize well to new, unseen data. The test set 
performances being signi�cantly worse than the training 
set performances is a sign of over�tting. In most cases, over-
�tting results from a model that is too complex for the 
underlying data [79].

Large and diverse datasets, as well as thorough validation 
and standardization, are necessary for the development of 
reliable AI models [80]. To demonstrate that AI algorithms 
are reliable and generalizable, rigorous validation metho-
dologies must be orchestrated. In general, standardization 
is bene�cial because it can increase the e�ectiveness, e�-
cacy, safety, compatibility, and cost-e�ectiveness of goods 
and services [80]. To make sure that AI systems are deployed 
in healthcare settings safely and responsibly, ethical issues 
and data privacy concerns must all be carefully considered. 
Ethical concerns are of great importance in the context of AI 
integration [81].
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