
18F-FDG PET/CT radiomics model from non-small cell 

lung cancer for preoperative prediction of lymph node 

metastasis based on overall data and the subset of occult 

lymph nodes

Abstract
Objective: Lymph node (LN) staging in lung cancer is crucial for treatment decisions. To develop and vali-
date a positron emission tomography/computed tomography (PET/CT) radiomics model for preoperative 
estimation of LN metastasis in non-small cell lung cancer (NSCLC).  Subjects and Methods: A retrospective 
analysis of 252 NSCLC patients with 548 pathologically con�rmed LN, including 227 occult LN, was perfor-
med. Clinical and PET/CT features were collected. Eight machine learning models were used for feature se-
lection and radiomics signature (R-signature) construction. Models were developed for both the overall and 
occult LN groups. Model performance was evaluated using area under the curve (AUC), calibration, and deci-
sion curve analysis. Results: The random forest-enhanced logistic regression (RFELR) model, based on 20 fe-
atures, showed the best performance in predicting LN metastasis in both groups. The combined model de-
monstrated the highest predictive e�cacy, with AUC of 0.94 (overall LN) and 0.89 (occult LN) in the training 
cohort, and 0.95 (overall LN) and 0.78 (occult LN) in the validation cohort. The combined model outper-
formed clinical, CT, and PET models (P<0.05) in both cohorts. Decision curve analysis showed a greater net 
bene�t across a wider range of threshold probabilities for LN metastasis prediction. Conclusion: The com-
bined model, integrating clinical, conventional PET/CT, and radiomics features, signi�cantly enhances LN 
metastasis diagnosis. It shows promise in predicting occult LN metastasis and o�ers valuable support for 
personalized therapeutic decisions in NSCLC patients.
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Introduction

Lung cancer is the second most common cancer and the leading cause of cancer de-
ath. Non-small cell lung cancer (NSCLC) the most common subtype of lung cancer, 
accounts for approximately 85% of all cases [1, 2]. In the context of NSCLC, accurate 

lymph node (LN) staging holds paramount importance, as it informs various treatment 
options for patients with NSCLC. Furthermore, there is an increased incidence of occult LN 
metastasis in early-stage NSCLC [3, 4], which can lead to changes in pathological staging, 
alterations in therapeutic strategies, and increased psychological stress for patients. Pre-
sently, the gold standard methods for preoperative diagnosing LN metastasis involve me-
diastinoscopy and endobronchial ultrasound-guided transbronchial needle aspiration 
(EBUS-TBNA). However, these methods cannot be routinely applied to the entire popu-
lation due to complications, technical constraints, and the physical condition of the pati-
ents.

18Fluorine-18-�uorodeoxyglucose ( F-FDG) positron emission tomography/computed 
tomography (PET/CT) proves to be a promising tool for diagnosing LN metastasis in 
NSCLC when interpreted using volume-based PET parameters, such as baseline total me-
tabolic tumor volume (MTV) and total lesion glycolysis (TLG) [5, 6]. Additionally, guidelines 
underscore the pivotal role of PET/CT in diagnosing LN metastasis, especially when com-
pared to EBUS-TBNA and mediastinoscopy [7]. While PET/CT conventional parameters 
have shown improved performance in LN staging, with an estimated sensitivity of 77% 
and speci�city of 86% when compared to CT alone (55% and 81%, respectively) [8, 9], the-
re are still de�ciencies in the diagnosis of occult LN metastasis. Occult lymph node metas-
tasis refers to the situation where no suspicious lesions are detected in the hilar and medi-
astinal LN on PET/CT scans, but postoperative pathological results con�rm the presence 
of lymph node metastasis. The incidence of occult LN metastasis in PET/CT is estimated to 
be between 15% and 18% [10-12]. Therefore, there is an urgent need for new methods to
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improve the detection rate of LN metastasis, especially oc-
cult LN metastasis.

Radiomics has emerged as a promising noninvasive tech-
nique for characterizing tumor heterogeneity, which aids in 
assessing therapeutic response, predicting prognosis, and 
classifying histopathological types in lung cancer [13, 14]. 
Recent years have witnessed signi�cant progress in apply-
ing radiomics for evaluating LN staging in NSCLC [15, 16]. 
However, there is a paucity of studies concerning the predic-
tion of LN staging using PET/CT LN radiomics for NSCLC. 
Furthermore, limited research has explored the potential of 
PET/CT radiomics features for predicting occult LN metasta-
sis. To address these gaps, a retrospective study was conduc-
ted to evaluate the e�ectiveness of PET/CT radiomics in as-
sessing the risk of LN metastasis in NSCLC patients. Additi-
onally, the study examined the potential of a combined mo-
del to predict occult LN metastasis, which could have signi-
�cant implications for clinical treatment decision-making.

Subjects and Methods

Patient data collection
This study was approved by the Ethics Committee of our hos-
pital (Approval No. 2022-255-03). Informed consent from pa-
tients was waived. The inclusion criteria were as follows: (I) 
Patients examined on PET/CT scanners with histologically 
con�rmed NSCLC between January 2017 and November 

182023; (II) Patients who underwent F-FDG PET/CT imaging 

with an interval of less than four weeks between imaging and 
pathological diagnosis. The exclusion criteria were as follows: 
(I) Without lymphadenectomy or LN biopsy pathology. (II) 
Patients who had undergone prior radiotherapy or chemo-
therapy before PET/CT imaging; (III) Medical data incom-
plete; (IV) patients with a history of other malignant tumors. 

In total, 252 patients were included in this study. The pati-
ents who satis�ed the inclusion criteria were identi�ed for 
the whole patient cohort, which is also referred to as the 
overall LN group (n=252). Additionally, patients with clinical 
stage N0M0 LN and having a short diameter (SD) ≤10mm 
and SUVmax ≤2.5 were selected from the whole patient co-
hort to form the occult LNs group (n=137). The patients en-
rolled �owchart is shown in Figure 1A. In overall LN group, 
there were 167 patients with N0 stage, 19 patients with N1 
stage, 53 patients with N2 stage, and 13 patients with N3 sta-
ge, while in occult LN group, there were 118 patients with N0 
stage, 6 patients with N1 stage, 13 patients with N2 stage. 
Then, these patients were divided into the LN(+) group and 
LN(�) group based on pathological reports. The LN enrolled 
�owchart is shown in Figure 1B. The inclusion criteria were as 
follows: (I) According to the pathology report de�ned with 
the N staging standard of the eighth edition (17) to locate 
and select surgical or supraclavicular biopsy LN station; (II) 1-
2 LN per station were selected with the maximum SUVmax; 
(III) The number of LN selected in each LN station was limited 
by the number of actual positive or negative pathological 
results. The exclusion criteria were as follows: the negative 
LN stations of LN(+) patients were excluded to ensure as 
much as possible the LN selected are truly pathologically 
positive (16).
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Figure 1. Flow diagram of the selection of patients (A) and LN (B). 



18F-FDG PET/CT imaging
All patients were instructed to fast for a minimum of six ho-
urs prior to the examination, avoiding the intake of sugary 
�uids or glucose, whether orally or intravenously, and ensu-
ring that their fasting blood glucose level remained within 
the range of ≤10.0mmol/L. Prior to tracer administration, 
each patient's weight was measured to calculate the stan-

18dardized uptake value. A dose of 3.70MBq/kg of F-FDG was 
administered intravenously, and imaging acquisition began 
60 minutes after the tracer injection, covering the region 
from the base of the skull to the upper thighs. Each bed posi-
tion was scanned for two minutes. Computed tomography 
acquisition data were used for attenuation correction, and 
the corrected PET images were reconstructed using orde-
red subset expectation maximization with a matrix size of 
144×144. The PET and CT images volume of interest draw-
ing and radiomics processing then registered and fused us-
ing Syntegra software.

Volume of interest drawing and radiomics processing
The PET/CT images were transferred to 3D Slicer software 
(version 4.8.0; available at: http://www.slicer.org). Two phy-
sicians, RH.L with fourteen experience in thoracic PET/CT tu-
mor diagnosis and YZ.G with ten years of experience in the 
same �eld, delineated the LN. For CT image delineation, a 
manual polygonal region of interest (ROI) was sketched 
along the edges of the lesions, with care taken to exclude ad-
jacent normal tissue as much as possible. In the case of PET 
image delineation, the 3D Slicer software employed a semi-
automatic region-growing algorithm to generate the VOI. In 
cases of discrepancies, a senior nuclear medicine expert re-
evaluated and reviewed the VOI. Prior to feature extraction, 
the PET images underwent preprocessing, including resam-
pling to 1×1×1mm³ voxel size using bilinear interpolation, 
and discretization to 128 �xed gray levels [18]. Following the 

manual segmentation, Pyradiomics package (accessible at 
http://www.radiomics.io/Pyradiomics.html), an open-so-
urce resource, were utilized to extract various features. This 
process yielded 1967 features for both PET and CT (Table 1). 

In addition to radiomics features, PET/CT conventional fe-
atures were also collected, which included both CT morpho-
logical parameters and PET metabolic parameters. The CT 
morphological parameters encompassed lesion location, 
long diameter (LD), SD, LD/SD, CTave, presence of calci�ca-
tion. Positron emission tomography metabolic parameters, 
on the other hand, included SUVmax, MTV and TLG. We me-
asured these parameters using dedicated software (Com-
passView 5.0, Philips). To calculate MTV, a circular ROI was 
drawn to encompass the entire lesion, while excluding other 
high metabolic lesions, using a threshold of 41% [19] 
SUVmax as the boundary. Metabolic tumor volume was au-
tomatically generated by the system. Total lesion glycolysis 
was then calculated as the product of SUVmean and MTV 
(TLG=SUVmean × MTV).

Radiomics feature selection and signature construc-
tion
A total of 3934 features from LN were extracted using the ra-
diomics library in Python, including 1967 CT features and 
1967 PET features (Table 1). The extracted features contain 
the original, LoG, Wavelet, Square, SquareRoot, Logarithm, 
Exponential, Gradient and LBP3D features with di�erent pa-
rameter setting. To minimize subjective di�erences with dif-
ferent VOI segmentation methods, the intraclass correlation 
coe�cients (ICC) for radiomics feature analysis and se-
lection were set at 0.8 [20]. To be noted that the model in ICC 
analysis was �single random raters�. Subsequently, to avoid 
over�tting, feature selection based on the conventional ma-
chine learning method was performed. For feature selection 
and R-signature constrtuction, we employed eight classical 

Table 1. Classi�cation of extracted features for both PET and CT.

Shape First-order GLCM GLRLM GLSZM GLDM NGTDM Total

Original 14 18 24 16 16 14 5 107

Log-sigma - 72 96 64 64 56 20 372

Wavelet - 144 192 128 128 112 40 744

Square - 18 24 16 16 14 5 93

Squareroot - 18 24 16 16 14 5 93

Logarithm - 18 24 16 16 14 5 93

Exponential - 18 24 16 16 14 5 93

Gradient - 18 24 16 16 14 5 93

LBP3D - 54 72 48 48 42 15 279

Total 14 378 504 336 336 294 105 1967
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methods: extreme gradient boosting (XGBoost), random fo-
rest classi�er (RFC), logistic regression (LR), least absolute 
shrinkage and selection operator (LASSO), gradient boos-
ting decision tree (GBC), logistic regression + recursive fe-
ature elimination (RFELR), extreme gradient boosting (XGB), 
and linear discriminant analysis (LDA). The penalty parame-
ters in these methods were optimized using ten-fold cross-
validation. Feature selection models were used to identify 
the top 20 features with the highest weights and the R-sig-
nature was constructed based on the selected features. Fi-
nally, optimal candidate R-signature was selected to con-
struct model. The R-signature in the overall LN group is de-
signated as R-signature 1, while the R-signature in the occult 
LNs group is designated as R-signature 2.

Statistical analysis
All statistical analyses were conducted using SPSS 22.0 soft-
ware (IBM Corporation) and Medcalc statistical software (ver-
sion 20.0.22). Categorical variables were analyzed by Pear-
son's chi-square test (or Fisher's exact test when necessary), 
continuous variables were compared by Student t-test or 
Mann-Whitney U test. The optimal threshold (cut-o� point) 
was determined by maximizing the Youden index (sensitivity 
+ speci�city - 1) through receiver operating characteristic 
(ROC) curve analysis. To assess the clinical data di�erences 
between the training and validation cohorts, Pearson's chi-
square test (or Fisher's exact test when necessary) was used 
for categorical variables, and the Mann-Whitney U test was 
used for comparing quantitative parameters. The optimal 
threshold (cut-o� point) was determined by maximizing the 
Youden index (sensitivity + speci�city - 1) through ROC curve 
analysis. Univariate and multivariate logistic regression ana-
lysis was performed to identify the independent predictive 
factors for model establishment. The discriminative ability of 
the models was evaluated using the AUC operating charac-
teristic curve and the Delong test was used to compare AUC 
between groups. To evaluate calibration performance, calib-
ration curves were generated for all cohorts. The clinical use-
fulness of the radiomics nomogram was evaluated using de-
cision curve analysis (DCA). A P-value less than 0.05 was con-
sidered statistically signi�cant.

Results

Clinical characteristics
A total of 548 LN and 227 occult LNs from 252 patients were 
identi�ed in the present study and were further assigned to 
either the training cohort or validation cohort. Of the 548 
LNs, and 70% (n=383) were assigned to the training cohort 
by strati�ed sampling; 162 LN were malignant, and 221 were 
benign. The remaining 30% (n=165) were selected for the 
validation cohort; 70 were malignant and 95 were benign. Of 
the 227 occult LN, and 70% (n=158) were assigned to the tra-
ining cohort by strati�ed sampling; 16 LN were malignant, 

Table 2. The top 20 features for construction of R-signature for both 
overall LN group and occult LN group.

Overall LNs group Occult LNs group

wavelet-
LHL_glcm_ClusterShade

original_firstorder_Interquartil

wavelet-
LHL_ngtdm_Contrast

log-sigma-3-mm-
3D_firstorder_Mea

lbp-3D-
m1_firstorder_Variance

log-sigma-3-mm-
3D_firstorder_Rob

original_shape_SurfaceVolum
eRati

log-sigma-3-mm-
3D_firstorder_Var

original_glrlm_RunPercentag
e

log-sigma-3-mm-
3D_glcm_ClusterPr

log-sigma-3-mm-
3D_firstorder_Ske

log-sigma-5-mm-
3D_firstorder_Kur

log-sigma-5-mm-
3D_glrlm_LongRunL

log-sigma-5-mm-
3D_firstorder_Rob

log-sigma-7-mm-
3D_glrlm_LongRunL

log-sigma-7-mm-
3D_glcm_JointEntr

log-sigma-9-mm-
3D_glcm_ClusterPr

log-sigma-7-mm-
3D_glcm_SumEntrop

log-sigma-9-mm-
3D_gldm_LargeDepe

wavelet-
HLL_glcm_ClusterShade

wavelet-
LLH_glrlm_LongRunEmphasi

gradient_firstorder_Median

wavelet-
LHL_glrlm_RunPercentage

original_glrlm_LongRunHigh
GrayLe

wavelet-
LHH_glrlm_RunVariance

log-sigma-9-mm-
3D_glcm_Autocorre

wavelet-
HLL_glrlm_RunPercentage

log-sigma-9-mm-
3D_glcm_JointAver

wavelet-
HLL_glrlm_ShortRunLowGra

log-sigma-9-mm-
3D_glcm_SumAverag

square_glrlm_RunLengthNon
Uniform

log-sigma-9-mm-
3D_gldm_LargeDepe

squareroot_firstorder_Mean
wavelet-

HLH_firstorder_Kurtosis

squareroot_firstorder_RootM
eanSq

wavelet-
LLL_glrlm_LongRunHighGra

logarithm_firstorder_Mean
squareroot_glrlm_LongRunHi

ghGray

logarithm_firstorder_RootMea
nSqu

logarithm_glrlm_LongRunHig
hGrayL

(Continued)
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and 142 were benign. The remaining 30% (n=69) were selec-
ted for the validation cohort; 7 were malignant and 62 were 
benign. 

There was no statistically signi�cant di�erence in the clini-
cal characteristics between the training cohorts and the vali-
dation cohort in both overall LN group and occult LN group 
as shown in Table 3. 

Radiomics feature selection and signature construc-
tion
A total of 2,659 features with an ICC greater than 0.8 were re-
tained. Among the eight traditional machine models, RFELR 
yielded the best performance. Subsequently, the top 20 fe-
atures were selected. In overall LN group, the selected fe-
atures included 2 original, 5 LoG, 7 Wavelet, 1 Square, 2 Squ-
areRoot, 2 Logarithm, and 1 LBP3D features (Table 2). While 
in occult LN group, the selected features consisted of 2 origi-
nal, 12 LoG, 3 Wavelet, 1 SquareRoot, 1 Logarithm, and 1 Gra-
dient feature (Table 2). The top 20 features were selected to 
construct the R-signature using RFELR for the two groups.

The optimal cut-o� values for were determined to be 
0.487 and 0.137 for R-signature1 and R-signature2, separa-
tely. The AUC values of R-signature were 0.92 and 0.89 in the 
training and validation cohort of overall LN group, while in 
occult LN group, the AUC were 0.86 and 0.67, respectively.

Univariate and multivariate logistic regression in the 
training cohort
In univariate logistic regression analysis, parameters like 
age, gender, pathological type, location, LD, SD, LD/SD, 
CTave, calci�cation, SUVmax, MTV, and TLG in overall LN 
group and gender, location, SD, LD/SD, SUVmax, MTV, and 
TLG in occult LN group exhibited a signi�cant association 
with LN metastasis (all P<0.05). In the multivariable logistic 
regression analysis, pathological type (OR=0.465, P=0.007),  
location (OR=0.299, P=0.005), LD (OR=2.724, P=0.026), cal-
ci�cation (OR=22.147, P=0.001), and SUVmax (OR=7.968, 
P<0.001) in overall LN group and gender (OR=12.880, P< 
0.001), location (OR=0.128, P=0.014), LD/SD (OR=0.236, P= 
0.030), and SUVmax (OR=6.844, P=0.027) in occult LN group 
were identi�ed as independent factors for predicting LN 
metastasis (Table 4).

Model construction
The R-signature, along with the signi�cant parameters from 
the above multifactorial analysis, was used to construct the 
model. Then, �ve models were established for overall LN 
group: The clinical model (pathological type), the CT model 
(location, LD, calci�cation), the PET model (SUVmax), the Ra-
diomics model (R-signature1) and the combined model 
(pathological type, location, LD, calci�cation, SUVmax, R-
signature1), another �ve models were established for occult 
LN group: The clinical model (gender), the CT model (loca-
tion, LD/SD), the PET model (SUVmax), the Radiomics mo-
del (R-signature2) and the combined model (gender, loca-
tion, LD/SD, SUVmax, R-signature2) (Table 5).

Evaluate and validate the performance of the model
The AUC values, sensitivity (SEN), and speci�city (SPE) for 

these models in the training cohort were as follows: Clinical 
model - 0.57, 0.85, 0.29, CT model - 0.82, 0.67, 0.85, PET mo-
del - 0.90, 0.81, 0.84, Radiomics model - 0.92, 0.78, 0.91, and 
Combined model - 0.94, 0.82, 0.90 in overall LN group and 
Clinical model - 0.76, 0.71, 0.88, CT model - 0.67, 0.70, 0.61, 
PET model - 0.77, 0.88, 0.71, Radiomics model - 0.89, 0.81, 
0.87 ,and Combined model - 0.95, 1.00, 0.78 in occult LN gro-
up (Figure 2 A, B). In the validation cohort, the AUC values, 
SEN, and SPE were: Clinical model - 0.58, 0.87, 0.27, CT mo-
del - 0.67, 0.70, 0.61, PET model - 0.80, 0.77, 0.80, Radiomics 
model - 0.86, 0.71, 0.88, and Combined model - 0.89, 0.74, 
0.89 in overall LN group and Clinical model - 0.61, 0.86, 0.36, 
CT model - 0.66, 0.43, 0.95, PET model - 0.58, 0.71, 0.45, 
Radiomics model - 0.867, 0.86, 0.53, and Combined model - 
0.78, 0.86, 0.65 in occult LN group (Figure 2 C, D).

Among these �ve models, the combined model displayed 
the highest predictive e�ectiveness (Figure 2). Compared to 
the clinical model, CT model and PET model, the AUC of the 
combined model exhibits a statistically signi�cant di�eren-
ce in both the training (Z=16.77, P<0.001; Z=6.33, P<0.001, 
Z=4.05, P<0.001 in overall LN group and Z=3.87, P<0.001; 
Z=3.06, P=0.002, Z=2.59, P=0.001 in occult LN group) and 
validation cohort (Z=8.26, P<0.001; Z=4.62, P<0.001, Z= 
4.15, P<0.001 in overall LN group). While the AUC of the 
combined model is statistically signi�cantly di�erent only 
when compared to the clinical model in the validation co-
hort of occult LN group (Z=2.60, P=0.009).

Calibration curves showed good agreement between the 
actual and predicted probabilities of occurrence for the 
combined model in both the training and validation cohorts 
and the performance of the combined model was visualized 
using a nomogram (Figure 3). Finally, The DCA plot clearly il-
lustrates that the combined model outperformed the others 
by achieving the highest net bene�t over a wider range of 
reasonable threshold probabilities (Figure 4).

Discussion

Lymph node metastasis has been con�rmed as an im-
portant prognostic factor in NSCLC and plays a critical role in 
guiding treatment decisions [21, 22]. Therefore, lymph node 
staging is a crucial step in the early detection of lung cancer. 
The current study managed to develop a PET/CT radiomics 
model. The proposed combined model achieved AUC of 
0.94, 0.95 for LN metastasis prediction, and 0.892, 0.78 for 
occult LN prediction, in the training and validation cohort, 
respectively. 

The identi�cation of LN metastasis in lung cancer relies on 
clinical and imaging features such as gender, tumor size, lo-
cation, histopathology, and SUVmax [23-25]. This study also 
found that adenocarcinoma histology, hilum-located lymph 
nodes, LD >7.8mm, and SUVmax >3.56 are associated with 
LN metastasis, while female gender, LD /SD ≤1.53, hilum-lo-
cated nodes, and SUVmax >1.78 are linked to occult LN me-
tastasis. However, models based on clinical, PET, and CT fe-
atures in validation cohort only achieved an AUC of 0.67 to 
0.77 for LN metastasis prediction, and 0.58-0.66 for occult LN 
metastasis prediction, which were far from meeting clinical
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Figure 2. Receiver operating characteristic curves of predictive mode for lymph nodes metastasis in overall LN group and occult LN group. Receiver operating characteristic 
curves of models to predict lymph nodes metastasis in the training (A) and validation cohort (B). Receiver operating characteristic curves of models to predict occult lymph 
nodes metastasis in the training (C) and validation cohort (D). 

Table 5. The variables of predictive models included in this study. 

Models Overall LN group Occult LN group

Clinical model Pathological type Gender

CT model Location, LD, Calcification Location, LD/SD

PET model SUVmax SUVmax

Radiomics model R-signature1 R-signature2

Combined model
Pathological type, Location, LD, Calcification, 

SUVmax, R-signature
Gender, Location, LD/SD, SUVmax, 

R-signature

LD, Long diameter ; SD, Short diameter; SUVmax, maximum standardized uptake value 

requirements. Therefore, further investigation is needed to 
identify more valuable radiographic features for predicting 
LN metastasis, particularly occult LN metastasis, to enhance 
clinical utility. 

Radiomics, which enables the quantitative extraction of 
high-dimensional radiological features, o�ers a promising 
approach for more accurate evaluation of lymph node sta-
tus in lung cancer. Several studies have been successful in 
recognizing LN metastasis, which yielded AUC values of 
0.78 to 0.92 in the training cohort and 0.73 to 0.91 in the vali-
dation cohort [26-29]. However, most studies have primarily 
focused on extracting features from the primary tumor, with 
little attention given to the radiomics features of the LN 
themselves. Xie Y et al. (2021) [16] reporting the use of CT fe-
atures to predict NSCLC LN metastasis, achieving AUC of 
0.85 and 0.83 in the training and validation cohorts, respec-
tively. Moreover, Ouyang et al. (2021) [30] revealed that PET 
radiomics signature showing good diagnostic e�cacy with 
AUC of 0.79 and 0.82 in the training and validation cohorts, 
respectively. In this study, we extracted LN imaging features 
from both PET and CT to develop the R-signature. The AUC 
was 0.92 in the training cohort and 0.86 in the validation co-

hort, demonstrating that our model outperforms previous 
studies. 

Several studies [31-34] have shown that radiomics featu-
res of primary tumors can predict occult LN metastasis with 
an AUC ranging from 0.78 to 0.97. Despite such inspiring 
success, the above radiomics studies were limited in primary 
tumor information, and the added value of PET radiomics 
features for occult LN prediction in NSCLC are still ambigu-
ous. The current study demonstrated that the combined 
model, which integrates clinical parameters, PET/CT con-
ventional features, and R-signature proved capable of pre-
dicting occult LN metastasis with the AUC of 0.89 and 0.78 in 
the training and validation cohorts, respectively, make it su-
perior to single-modal models based on clinical, PET or CT 
alone for ONM prediction. Although the slightly lower per-
formance in the validation cohort, it still provides valuable 
insights. We speculate that the lower performance in the va-
lidation cohort may be due to class imbalance and the low 
number of positive samples.

The optimal machine learning model in both groups of 
this study was random forest-enhanced logistic regression 
(RFELR), which builds a LR model and removes the weakest 



Figure 4. Decision curve analysis of the models for predicting LN metastasis. (A, B) Decision curve analysis for overall LN group in the training and validation cohort. (C, D). 
Decision curve analysis for occult LN group in the training and validation cohort. 

Figure 3. Combined nomogram and calibration curves for predicting LN metastasis. (A) Combined nomogram for overall LN group in the training cohort. (B) Combined 
nomogram for occult LN group in the training cohort. (D, E) Calibration curve for overall LN group in the training and validation cohorts. (E, F) Calibration curve for occult LN 
group in the training and validation cohorts. 
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features, repeating this process on the new feature set until 
the desired number of features is reached. This feature selec-
tion method is known as recursive feature elimination (RFE). 
Random forest-enhanced logistic regression is a classic mo-
del known for its stability, particularly with small sample si-
zes. The RFELR machine learning model is suitable for this 
study, particularly for the occult LN group, which exhibits a 
class imbalance, with a considerable disparity between the 
number of positive and negative cases. 

This study still had some limitations. First, as a retrospec-
tive study, selection bias was inevitable. Second, although 
we employed the RFELR machine learning model, which is 
tailored for small sample sizes, the class imbalance within the 
occult lymph node group may lead to a model bias, favoring 
the prediction of the category with a higher sample. Third, al-
though we have tried our best to accurately align the lymph 
node locations between the PET/CT images and surgical re-
section or EBUS-TBNA, completely eliminating matching bi-
as remains challenging. Finally, our study did not include cli-
nical information such as tumor markers, a study [35] have 
shown that these parameters are not independent risk fac-
tors for LN metastasis; however, a comprehensive asses-
sment is still required.

In conclusion, radiomics model of LN can serve as predic-
tors for LN metastasis in patients with NSCLC. When PET/CT 
radiomics features, clinical features, and PET/CT conven-
tional features are integrated into a combined model, it en-
hances the accuracy of predicting LN metastasis in patients 
with NSCLC compared to using CT or PET models indepen-
dently. Furthermore, the combined model is reliable in pre-
dicting occult LN for guiding individualized decisions.
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