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Abstract

Objective: Lymph node (LN) staging in lung cancer is crucial for treatment decisions. To develop and vali-
date a positron emission tomography/computed tomography (PET/CT) radiomics model for preoperative
estimation of LN metastasis in non-small cell lung cancer (NSCLC). Subjects and Methods: A retrospective
analysis of 252 NSCLC patients with 548 pathologically confirmed LN, including 227 occult LN, was perfor-
med. Clinical and PET/CT features were collected. Eight machine learning models were used for feature se-
lection and radiomics signature (R-signature) construction. Models were developed for both the overall and
occult LN groups. Model performance was evaluated using area under the curve (AUC), calibration, and deci-
sion curve analysis. Results: The random forest-enhanced logistic regression (RFELR) model, based on 20 fe-
atures, showed the best performance in predicting LN metastasis in both groups. The combined model de-
monstrated the highest predictive efficacy, with AUC of 0.94 (overall LN) and 0.89 (occult LN) in the training
cohort, and 0.95 (overall LN) and 0.78 (occult LN) in the validation cohort. The combined model outper-
formed clinical, CT, and PET models (P<0.05) in both cohorts. Decision curve analysis showed a greater net
benefit across a wider range of threshold probabilities for LN metastasis prediction. Conclusion: The com-
bined model, integrating clinical, conventional PET/CT, and radiomics features, significantly enhances LN
metastasis diagnosis. It shows promise in predicting occult LN metastasis and offers valuable support for
personalized therapeutic decisions in NSCLC patients.

Hell I NuclMed 2025; 28(3): 200-211 Epubahead of print: 15 December 2025 Published online: 30 December 2025

Introduction

ung cancer is the second most common cancer and the leading cause of cancer de-

ath. Non-small cell lung cancer (NSCLC) the most common subtype of lung cancer,

accounts for approximately 85% of all cases [1, 2]. In the context of NSCLC, accurate
lymph node (LN) staging holds paramount importance, as it informs various treatment
options for patients with NSCLC. Furthermore, there is an increased incidence of occult LN
metastasis in early-stage NSCLC [3, 4], which can lead to changes in pathological staging,
alterations in therapeutic strategies, and increased psychological stress for patients. Pre-
sently, the gold standard methods for preoperative diagnosing LN metastasis involve me-
diastinoscopy and endobronchial ultrasound-guided transbronchial needle aspiration
(EBUS-TBNA). However, these methods cannot be routinely applied to the entire popu-
lation due to complications, technical constraints, and the physical condition of the pati-
ents.

Fluorine-18-fluorodeoxyglucose (*F-FDG) positron emission tomography/computed
tomography (PET/CT) proves to be a promising tool for diagnosing LN metastasis in
NSCLC when interpreted using volume-based PET parameters, such as baseline total me-
tabolic tumor volume (MTV) and total lesion glycolysis (TLG) [5, 6]. Additionally, guidelines
underscore the pivotal role of PET/CT in diagnosing LN metastasis, especially when com-
pared to EBUS-TBNA and mediastinoscopy [7]. While PET/CT conventional parameters
have shown improved performance in LN staging, with an estimated sensitivity of 77%
and specificity of 86% when compared to CT alone (55% and 81%, respectively) [8, 9], the-
re are still deficiencies in the diagnosis of occult LN metastasis. Occult lymph node metas-
tasis refers to the situation where no suspicious lesions are detected in the hilar and medi-
astinal LN on PET/CT scans, but postoperative pathological results confirm the presence
of lymph node metastasis. The incidence of occult LN metastasis in PET/CT is estimated to
be between 15% and 18% [10-12]. Therefore, there is an urgent need for new methods to
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improve the detection rate of LN metastasis, especially oc-
cult LN metastasis.

Radiomics has emerged as a promising noninvasive tech-
nique for characterizing tumor heterogeneity, which aids in
assessing therapeutic response, predicting prognosis, and
classifying histopathological types in lung cancer [13, 14].
Recent years have witnessed significant progress in apply-
ing radiomics for evaluating LN staging in NSCLC [15, 16].
However, there is a paucity of studies concerning the predic-
tion of LN staging using PET/CT LN radiomics for NSCLC.
Furthermore, limited research has explored the potential of
PET/CT radiomics features for predicting occult LN metasta-
sis.To address these gaps, a retrospective study was conduc-
ted to evaluate the effectiveness of PET/CT radiomics in as-
sessing the risk of LN metastasis in NSCLC patients. Additi-
onally, the study examined the potential of a combined mo-
del to predict occult LN metastasis, which could have signi-
ficantimplications for clinical treatment decision-making.

Subjectsand Methods

Patient data collection

This study was approved by the Ethics Committee of our hos-
pital (Approval No. 2022-255-03). Informed consent from pa-
tients was waived. The inclusion criteria were as follows: (1)
Patients examined on PET/CT scanners with histologically
confirmed NSCLC between January 2017 and November
2023; (Il) Patients who underwent “F-FDG PET/CT imaging

with aninterval of less than four weeks between imaging and
pathological diagnosis. The exclusion criteria were as follows:
(I) Without lymphadenectomy or LN biopsy pathology. (II)
Patients who had undergone prior radiotherapy or chemo-
therapy before PET/CT imaging; (Ill) Medical data incom-
plete; (IV) patients with a history of other malignant tumors.

In total, 252 patients were included in this study. The pati-
ents who satisfied the inclusion criteria were identified for
the whole patient cohort, which is also referred to as the
overall LN group (n=252). Additionally, patients with clinical
stage NOMO LN and having a short diameter (SD) <10mm
and SUVmax <2.5 were selected from the whole patient co-
hort to form the occult LNs group (n=137).The patients en-
rolled flowchart is shown in Figure 1A. In overall LN group,
there were 167 patients with NO stage, 19 patients with N1
stage, 53 patients with N2 stage, and 13 patients with N3 sta-
ge, whilein occult LN group, there were 118 patients with NO
stage, 6 patients with N1 stage, 13 patients with N2 stage.
Then, these patients were divided into the LN(+) group and
LN(-) group based on pathological reports. The LN enrolled
flowchartis shown in Figure 1B.Theinclusion criteria were as
follows: (I) According to the pathology report defined with
the N staging standard of the eighth edition (17) to locate
and select surgical or supraclavicular biopsy LN station; (Il) 1-
2 LN per station were selected with the maximum SUVmax;
(1) The number of LN selected in each LN station was limited
by the number of actual positive or negative pathological
results. The exclusion criteria were as follows: the negative
LN stations of LN(+) patients were excluded to ensure as
much as possible the LN selected are truly pathologically
positive (16).

underwent '®F-FDG PET/CT scan in the hospital

A Non-Small Cell Lung Cancer patients
from January 2017 to November 2023 (N =747)

biopsy pathology (N=439);
Previous history of cancer (N=20);

495 patients excluded:
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According to the pathology report for surgical or biopsy-proven LNs;
The negative lymph node in LN(+) pati were 3
1-2 LNs per station were selected with the maximum SUV,,,,;

The number of LNs selected in each LN station was limited by the number of actual positive or negative pathological results.

Figure 1. Flow diagram of the selection of patients (A) and LN (B).
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"F-FDG PET/CTimaging

All patients were instructed to fast for a minimum of six ho-
urs prior to the examination, avoiding the intake of sugary
fluids or glucose, whether orally or intravenously, and ensu-
ring that their fasting blood glucose level remained within
the range of <10.0mmol/L. Prior to tracer administration,
each patient's weight was measured to calculate the stan-
dardized uptake value. A dose of 3.70MBgq/kg of “F-FDG was
administered intravenously, and imaging acquisition began
60 minutes after the tracer injection, covering the region
from the base of the skull to the upper thighs. Each bed posi-
tion was scanned for two minutes. Computed tomography
acquisition data were used for attenuation correction, and
the corrected PET images were reconstructed using orde-
red subset expectation maximization with a matrix size of
144x144.The PET and CT images volume of interest draw-
ing and radiomics processing then registered and fused us-
ing Syntegra software.

Volume of interest drawing and radiomics processing
The PET/CT images were transferred to 3D Slicer software
(version 4.8.0; available at: http://www.slicer.org). Two phy-
sicians, RH.L with fourteen experience in thoracic PET/CT tu-
mor diagnosis and YZ.G with ten years of experience in the
same field, delineated the LN. For CT image delineation, a
manual polygonal region of interest (ROI) was sketched
along the edges of the lesions, with care taken to exclude ad-
jacent normal tissue as much as possible. In the case of PET
image delineation, the 3D Slicer software employed a semi-
automatic region-growing algorithm to generate the VOI. In
cases of discrepancies, a senior nuclear medicine expert re-
evaluated and reviewed the VOI. Prior to feature extraction,
the PET images underwent preprocessing, including resam-
pling to 1x1x1mm? voxel size using bilinear interpolation,
and discretization to 128 fixed gray levels [18]. Following the

manual segmentation, Pyradiomics package (accessible at
http://www.radiomics.io/Pyradiomics.html), an open-so-
urce resource, were utilized to extract various features. This
processyielded 1967 features for both PETand CT (Table 1).

In addition to radiomics features, PET/CT conventional fe-
atures were also collected, which included both CT morpho-
logical parameters and PET metabolic parameters. The CT
morphological parameters encompassed lesion location,
long diameter (LD), SD, LD/SD, CTave, presence of calcifica-
tion. Positron emission tomography metabolic parameters,
on the other hand, included SUVmax, MTV and TLG. We me-
asured these parameters using dedicated software (Com-
passView 5.0, Philips). To calculate MTV, a circular ROl was
drawn to encompass the entire lesion, while excluding other
high metabolic lesions, using a threshold of 41% [19]
SUVmax as the boundary. Metabolic tumor volume was au-
tomatically generated by the system. Total lesion glycolysis
was then calculated as the product of SUVmean and MTV
(TLG=SUVmean x MTV).

Radiomics feature selection and signature construc-
tion

Atotal of 3934 features from LN were extracted using the ra-
diomics library in Python, including 1967 CT features and
1967 PET features (Table 1). The extracted features contain
the original, LoG, Wavelet, Square, SquareRoot, Logarithm,
Exponential, Gradient and LBP3D features with different pa-
rameter setting. To minimize subjective differences with dif-
ferentVOIl segmentation methods, the intraclass correlation
coefficients (ICC) for radiomics feature analysis and se-
lection were setat 0.8 [20].To be noted that the modelin ICC
analysis was “single random raters”. Subsequently, to avoid
overfitting, feature selection based on the conventional ma-
chine learning method was performed. For feature selection
and R-signature constrtuction, we employed eight classical

Table 1. Classification of extracted features forboth PETand CT.

Shape First-order GLCM GLRLM GLSZM GLDM NGTDM Total
Original 14 18 24 16 16 14 5 107
Log-sigma - 72 96 64 64 56 20 372
Wavelet - 144 192 128 128 112 40 744
Square - 18 24 16 16 14 5 93
Squareroot - 18 24 16 16 14 5 93
Logarithm - 18 24 16 16 14 5 93
Exponential - 18 24 16 16 14 5 93
Gradient - 18 24 16 16 14 5 93
LBP3D - 54 72 48 48 42 15 279
Total 14 378 504 336 336 294 105 1967
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methods: extreme gradient boosting (XGBoost), random fo-
rest classifier (RFC), logistic regression (LR), least absolute
shrinkage and selection operator (LASSO), gradient boos-
ting decision tree (GBC), logistic regression + recursive fe-
ature elimination (RFELR), extreme gradient boosting (XGB),
and linear discriminant analysis (LDA). The penalty parame-
ters in these methods were optimized using ten-fold cross-
validation. Feature selection models were used to identify
the top 20 features with the highest weights and the R-sig-
nature was constructed based on the selected features. Fi-
nally, optimal candidate R-signature was selected to con-
struct model. The R-signature in the overall LN group is de-
signated as R-signature 1, while the R-signature in the occult
LNs groupis designated as R-signature 2.

Table 2. The top 20 features for construction of R-signature for both
overall LN group and occult LN group.

Overall LNs group Occult LNs group

LHL glc\rllvwa\gfstierShade original_firstorder_Interquartil
wavelet-
LHL_ngtdm_Contrast

log-sigma-3-mm-
3D _firstorder Mea

Ibp-3D-
m1_firstorder_Variance

log-sigma-3-mm-
3D _firstorder Rob

original_shape_SurfaceVolum
eRati

log-sigma-3-mm-
3D_firstorder_Var

original_glrlm_RunPercentag log-sigma-3-mm-
e 3D_glcm_ClusterPr

log-sigma-3-mm-
3D_firstorder_Ske

log-sigma-5-mm-
3D_firstorder_Kur

log-sigma-5-mm-
3D_glrim_LongRunL

log-sigma-5-mm-
3D_firstorder_Rob

log-sigma-7-mm-
3D_glrim_LongRunL

log-sigma-7-mm-
3D_glcm_JointEntr

log-sigma-7-mm-
3D_glcm_SumEntrop

log-sigma-9-mm-
3D_glem_ClusterPr

wavelet-
HLL_glcm_ClusterShade

log-sigma-9-mm-
3D_gldm_LargeDepe

LLH gIrImngr?é?RE-unEmphasi gradient_firstorder_Median
wavelet-
LHL_glrlm_RunPercentage

original_glrim_LongRunHigh
GrayLe

wavelet-
LHH_glrim_RunVariance

log-sigma-9-mm-
3D_glem_Autocorre

wavelet-
HLL_glrim_RunPercentage

log-sigma-9-mm-
3D_glcm_JointAver

(Continued)

wavelet-
HLL_glrim_ShortRunLowGra

log-sigma-9-mm-
3D_glcm_SumAverag

square_glrim_RunLengthNon
Uniform

log-sigma-9-mm-
3D_gldm_LargeDepe

i wavelet-
squareroot_firstorder_Mean HLH_firstorder_Kurtosis
wavelet-
LLL_glrlm_LongRunHighGra

squareroot_firstorder RootM
eanSq

logarithm_firstorder_Mean squareroot_glrim_LongRunHi
- - ghGray

logarithm_firstorder_RootMea logarithm_glrim_LongRunHig
nSqu hGrayL

Statistical analysis

All statistical analyses were conducted using SPSS 22.0 soft-
ware (IBM Corporation) and Medcalc statistical software (ver-
sion 20.0.22). Categorical variables were analyzed by Pear-
son's chi-square test (or Fisher's exact test when necessary),
continuous variables were compared by Student t-test or
Mann-Whitney U test. The optimal threshold (cut-off point)
was determined by maximizing the Youden index (sensitivity
+ specificity - 1) through receiver operating characteristic
(ROCQ) curve analysis. To assess the clinical data differences
between the training and validation cohorts, Pearson's chi-
square test (or Fisher's exact test when necessary) was used
for categorical variables, and the Mann-Whitney U test was
used for comparing quantitative parameters. The optimal
threshold (cut-off point) was determined by maximizing the
Youden index (sensitivity + specificity - 1) through ROC curve
analysis. Univariate and multivariate logistic regression ana-
lysis was performed to identify the independent predictive
factors for model establishment. The discriminative ability of
the models was evaluated using the AUC operating charac-
teristic curve and the Delong test was used to compare AUC
between groups. To evaluate calibration performance, calib-
ration curves were generated for all cohorts. The clinical use-
fulness of the radiomics nomogram was evaluated using de-
cision curve analysis (DCA). A P-value less than 0.05 was con-
sidered statistically significant.

Results

Clinical characteristics

A total of 548 LN and 227 occult LNs from 252 patients were
identified in the present study and were further assigned to
either the training cohort or validation cohort. Of the 548
LNs, and 70% (n=383) were assigned to the training cohort
by stratified sampling; 162 LN were malignant,and 221 were
benign. The remaining 30% (n=165) were selected for the
validation cohort; 70 were malignantand 95 were benign. Of
the 227 occultLN, and 70% (n=158) were assigned to the tra-
ining cohort by stratified sampling; 16 LN were malignant,
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and 142 were benign.The remaining 30% (n=69) were selec-
ted for the validation cohort; 7 were malignant and 62 were
benign.

There was no statistically significant difference in the clini-
cal characteristics between the training cohorts and the vali-
dation cohort in both overall LN group and occult LN group
asshowninTable3.

Radiomics feature selection and signature construc-
tion
Atotal of 2,659 features with an ICC greater than 0.8 were re-
tained. Among the eight traditional machine models, RFELR
yielded the best performance. Subsequently, the top 20 fe-
atures were selected. In overall LN group, the selected fe-
aturesincluded 2 original, 5 LoG, 7 Wavelet, 1 Square, 2 Squ-
areRoot, 2 Logarithm, and 1 LBP3D features (Table 2). While
inoccult LN group, the selected features consisted of 2 origi-
nal, 12 LoG, 3 Wavelet, 1 SquareRoot, 1 Logarithm,and 1 Gra-
dient feature (Table 2). The top 20 features were selected to
construct the R-signature using RFELR for the two groups.
The optimal cut-off values for were determined to be
0.487 and 0.137 for R-signature1 and R-signature2, separa-
tely. The AUC values of R-signature were 0.92 and 0.89 in the
training and validation cohort of overall LN group, while in
occultLN group, the AUCwere 0.86 and 0.67, respectively.

Univariate and multivariate logistic regression in the
training cohort

In univariate logistic regression analysis, parameters like
age, gender, pathological type, location, LD, SD, LD/SD,
CTave, calcification, SUVmax, MTV, and TLG in overall LN
group and gender, location, SD, LD/SD, SUVmax, MTV, and
TLG in occult LN group exhibited a significant association
with LN metastasis (all P<0.05). In the multivariable logistic
regression analysis, pathological type (OR=0.465, P=0.007),
location (OR=0.299, P=0.005), LD (OR=2.724, P=0.026), cal-
cification (OR=22.147, P=0.001), and SUVmax (OR=7.968,
P<0.001) in overall LN group and gender (OR=12.880, P<
0.001), location (OR=0.128, P=0.014), LD/SD (OR=0.236, P=
0.030), and SUVmax (OR=6.844, P=0.027) in occult LN group
were identified as independent factors for predicting LN
metastasis (Table 4).

Model construction

The R-signature, along with the significant parameters from
the above multifactorial analysis, was used to construct the
model. Then, five models were established for overall LN
group: The clinical model (pathological type), the CT model
(location, LD, calcification), the PET model (SUVmax), the Ra-
diomics model (R-signaturel) and the combined model
(pathological type, location, LD, calcification, SUVmax, R-
signature1), another five models were established for occult
LN group: The clinical model (gender), the CT model (loca-
tion, LD/SD), the PET model (SUVmax), the Radiomics mo-
del (R-signature2) and the combined model (gender, loca-
tion, LD/SD, SUVmax, R-signature2) (Table 5).

Evaluate and validate the performance of the model
The AUC values, sensitivity (SEN), and specificity (SPE) for

these models in the training cohort were as follows: Clinical
model -0.57,0.85,0.29, CT model - 0.82,0.67,0.85, PET mo-
del-0.90, 0.81, 0.84, Radiomics model - 0.92, 0.78,0.91, and
Combined model - 0.94, 0.82, 0.90 in overall LN group and
Clinical model - 0.76, 0.71, 0.88, CT model - 0.67, 0.70, 0.61,
PET model - 0.77, 0.88, 0.71, Radiomics model - 0.89, 0.81,
0.87 ,and Combined model-0.95,1.00,0.78in occult LN gro-
up (Figure 2 A, B). In the validation cohort, the AUC values,
SEN, and SPE were: Clinical model - 0.58, 0.87, 0.27, CT mo-
del-0.67,0.70,0.61, PET model - 0.80, 0.77, 0.80, Radiomics
model - 0.86, 0.71, 0.88, and Combined model - 0.89, 0.74,
0.89in overall LN group and Clinical model - 0.61, 0.86, 0.36,
CT model - 0.66, 0.43, 0.95, PET model - 0.58, 0.71, 0.45,
Radiomics model - 0.867, 0.86, 0.53, and Combined model -
0.78,0.86,0.65in occult LN group (Figure 2C, D).

Among these five models, the combined model displayed
the highest predictive effectiveness (Figure 2). Compared to
the clinical model, CT model and PET model, the AUC of the
combined model exhibits a statistically significant differen-
ce in both the training (Z=16.77, P<0.001; Z=6.33, P<0.001,
Z=4.05, P<0.001 in overall LN group and Z=3.87, P<0.001;
Z=3.06, P=0.002, Z=2.59, P=0.001 in occult LN group) and
validation cohort (Z=8.26, P<0.001; Z=4.62, P<0.001, Z=
4.15, P<0.001 in overall LN group). While the AUC of the
combined model is statistically significantly different only
when compared to the clinical model in the validation co-
hort of occult LN group (Z=2.60, P=0.009).

Calibration curves showed good agreement between the
actual and predicted probabilities of occurrence for the
combined modelin both the training and validation cohorts
and the performance of the combined model was visualized
using a nomogram (Figure 3). Finally, The DCA plot clearly il-
lustrates that the combined model outperformed the others
by achieving the highest net benefit over a wider range of
reasonablethreshold probabilities (Figure 4).

Discussion

Lymph node metastasis has been confirmed as an im-
portant prognosticfactorin NSCLC and plays a critical rolein
guiding treatment decisions [21, 22]. Therefore, lymph node
staging is a crucial step in the early detection of lung cancer.
The current study managed to develop a PET/CT radiomics
model. The proposed combined model achieved AUC of
0.94, 0.95 for LN metastasis prediction, and 0.892, 0.78 for
occult LN prediction, in the training and validation cohort,
respectively.

Theidentification of LN metastasisin lung cancer relies on
clinical and imaging features such as gender, tumor size, lo-
cation, histopathology, and SUVmax [23-25].This study also
found that adenocarcinoma histology, hilum-located lymph
nodes, LD >7.8mm, and SUVmax >3.56 are associated with
LN metastasis, while female gender, LD /SD <1.53, hilum-lo-
cated nodes, and SUVmax >1.78 are linked to occult LN me-
tastasis. However, models based on clinical, PET, and CT fe-
atures in validation cohort only achieved an AUC of 0.67 to
0.77 for LN metastasis prediction,and 0.58-0.66 for occult LN
metastasis prediction, which were far from meeting clinical
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Table 5. Thevariables of predictive models included in this study.

Models Overall LN group Occult LN group
Clinical model Pathological type Gender
CT model Location, LD, Calcification Location, LD/SD
PET model SUVmax SUVmax

Radiomics model

R-signature1

R-signature2

Combined model

Pathological type, Location, LD, Calcification,
SUVmax, R-signature

Gender, Location, LD/SD, SUVmax,
R-signature

LD, Long diameter; SD, Short diameter; SUVmax, maximum standardized uptake value

A LN metastasis prediction in the training cohort B LN metastasis prediction in the validation cohort C Occult LN metastasis prediction in the training cohort D Oceult LN metastasis prediction in the validation cohort
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Figure 2. Receiver operating characteristic curves of predictive mode for lymph nodes metastasis in overall LN group and occult LN group. Receiver operating characteristic
curves of models to predict lymph nodes metastasis in the training (A) and validation cohort (B). Receiver operating characteristic curves of models to predict occult lymph

nodes metastasis in the training (C) and validation cohort (D).

requirements. Therefore, further investigation is needed to
identify more valuable radiographic features for predicting
LN metastasis, particularly occult LN metastasis, to enhance
clinical utility.

Radiomics, which enables the quantitative extraction of
high-dimensional radiological features, offers a promising
approach for more accurate evaluation of lymph node sta-
tus in lung cancer. Several studies have been successful in
recognizing LN metastasis, which yielded AUC values of
0.78t00.92in the training cohortand 0.73t00.91 in the vali-
dation cohort [26-29]. However, most studies have primarily
focused on extracting features from the primary tumor, with
little attention given to the radiomics features of the LN
themselves. Xie Y etal. (2021) [16] reporting the use of CT fe-
atures to predict NSCLC LN metastasis, achieving AUC of
0.85 and 0.83 in the training and validation cohorts, respec-
tively. Moreover, Ouyang et al. (2021) [30] revealed that PET
radiomics signature showing good diagnostic efficacy with
AUC of 0.79 and 0.82 in the training and validation cohorts,
respectively. In this study, we extracted LN imaging features
from both PET and CT to develop the R-signature. The AUC
was 0.92 in the training cohort and 0.86 in the validation co-

hort, demonstrating that our model outperforms previous
studies.

Several studies [31-34] have shown that radiomics featu-
res of primary tumors can predict occult LN metastasis with
an AUC ranging from 0.78 to 0.97. Despite such inspiring
success, the above radiomics studies were limited in primary
tumor information, and the added value of PET radiomics
features for occult LN prediction in NSCLC are still ambigu-
ous. The current study demonstrated that the combined
model, which integrates clinical parameters, PET/CT con-
ventional features, and R-signature proved capable of pre-
dicting occult LN metastasis with the AUC of 0.89and 0.78in
the training and validation cohorts, respectively, make it su-
perior to single-modal models based on clinical, PET or CT
alone for ONM prediction. Although the slightly lower per-
formance in the validation cohort, it still provides valuable
insights. We speculate that the lower performancein the va-
lidation cohort may be due to class imbalance and the low
number of positive samples.

The optimal machine learning model in both groups of
this study was random forest-enhanced logistic regression
(RFELR), which builds a LR model and removes the weakest
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Figure 3. Combined nomogram and calibration curves for predicting LN metastasis. (A) Combined nomogram for overall LN group in the training cohort. (B) Combined
nomogram for occult LN group in the training cohort. (D, E) Calibration curve for overall LN group in the training and validation cohorts. (E, F) Calibration curve for occult LN
groupinthe training and validation cohorts.
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Figure 4. Decision curve analysis of the models for predicting LN metastasis. (A, B) Decision curve analysis for overall LN group in the training and validation cohort. (C, D).
Decision curve analysis for occult LN group in the training and validation cohort.
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features, repeating this process on the new feature set until
the desired number of features is reached. This feature selec-
tion method is known as recursive feature elimination (RFE).
Random forest-enhanced logistic regression is a classic mo-
del known for its stability, particularly with small sample si-
zes. The RFELR machine learning model is suitable for this
study, particularly for the occult LN group, which exhibits a
class imbalance, with a considerable disparity between the
number of positive and negative cases.

This study still had some limitations. First, as a retrospec-
tive study, selection bias was inevitable. Second, although
we employed the RFELR machine learning model, which is
tailored for small sample sizes, the class imbalance within the
occult lymph node group may lead to a model bias, favoring
the prediction of the category with a higher sample.Third, al-
though we have tried our best to accurately align the lymph
node locations between the PET/CT images and surgical re-
section or EBUS-TBNA, completely eliminating matching bi-
as remains challenging. Finally, our study did not include cli-
nical information such as tumor markers, a study [35] have
shown that these parameters are not independent risk fac-
tors for LN metastasis; however, a comprehensive asses-
smentis still required.

In conclusion, radiomics model of LN can serve as predic-
tors for LN metastasis in patients with NSCLC. When PET/CT
radiomics features, clinical features, and PET/CT conven-
tional features are integrated into a combined model, it en-
hances the accuracy of predicting LN metastasis in patients
with NSCLC compared to using CT or PET models indepen-
dently. Furthermore, the combined model is reliable in pre-
dicting occult LN for guiding individualized decisions.
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