
18F-FDG PET radiomics for predicting progression-free 

survival in locally advanced cervical squamous cell carcinoma

Abstract
18Objective: To develop a �uorine-18-�uorodeoxyglucose ( F-FDG) positron emission tomography (PET) ra-

diomics-based nomogram model for predicting progression-free survival (PFS) in locally advanced cervical 
squamous cell carcinoma (LACSC) patients undergoing concurrent chemoradiotherapy (CCRT). Materials  
and Methods: A retrospective study included 241 LACSC patients treated with CCRT, divided into training 
(n=168) and validation (n=73) sets. Lesion segmentation, radiomics feature extraction and screening were 

18performed on F-FDG PET images of each patient, and radiomics scores (Rad-scores) were calculated. Univa-
riate and multivariate Cox regression analyses were used to identify independent prognostic factors and cre-
ate a combined model and nomogram. Predictive performance was assessed using time-dependent rece-
iver operating characteristic (ROC) curves, area under the curve (AUC), and consistency index (C-index). Ca-
libration curves evaluated nomogram accuracy, and decision curve analysis (DCA) assessed nomogram cli-
nical applicability. Results: The Rad-score calculated from �ve optimal radiomics features and FIGO stage 
were independent predictors of PFS in LACSC patients. The C-index values for the FIGO stage, Rad-score, and 
combined model were 0.586, 0.692, and 0.727 in the training set, and 0.612, 0.668, and 0.698 in the validation 
set, respectively. The combined model showed excellent predictive ability for PFS at 12, 18, and 24 months, 
with training set AUC of 0.805, 0.738, and 0.719, and validation set AUC of 0.670, 0.744, and 0.741, respecti-
vely. The calibration curves con�rmed a good agreement between predicted and actual progression proba-

18bilities, with DCA revealing signi�cant clinical net bene�ts. Conclusion: The F-FDG PET radiomics-based 
nomogram e�ectively predicted PFS in LACSC patients and could support individualized treatment deci-
sions and accurate prognostic evaluations.
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Introduction

Cervical cancer, the fourth most common malignancy in women globally [1], is pre-
dominantly squamous cell carcinoma (SCC), accounting for 70% of cases [2].The 
2018 International Federation of Gynecology and Obstetrics (FIGO) staging system 

classi�es IB3-IVA as locally advanced cervical cancer (LACC), representing over two-thirds 
of cases, with concurrent chemoradiotherapy (CCRT) as the standard treatment [3, 4]. 
Through CCRT, although 70%-90% of patients achieving complete remission, about one-
third experience recurrence within two years, with a median post-recurrence survival of 
10-12 months [5]. Therefore, early identi�cation of high-risk patients for personalized tre-
atment adjustments, such as dose escalation or alternative therapies, is crucial to reduce 
treatment failure and recurrence.

Previous studies link clinicopathological indicators like histological type, tumor size, and 
lymph node metastasis to LACC prognosis [6-8]. However, patients with similar clinicopa-
thological features often have divergent clinical outcomes, highlighting the need for more 
precise prognostic biomarkers to enhance treatment management and patient survival. 
Given that the current LACC-related treatment relies heavily on imaging evaluations, so-
me scholars suggest using functional imaging parameters for risk strati�cation and survi-
val rate prediction in cervical cancer patients [9, 10]. Nonetheless, partial studies reported 
that such indicators are unstable and vary with di�erent quantitative techniques [11, 12].

Radiomics, a promising translational research �eld, extracts imaging features from me-
dical images and integrates machine learning to correlate high-through put imaging mar-
kers with biological data, improving disease interpretation and management [13]. Recen-
tly, radiomics-based imaging markers have made signi�cant progress in the auxiliary di-
agnosis, e�cacy evaluation and prognosis prediction of cervical cancer [14-16]. However,
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most of the previous studies on the correlation between ra-
diomics and the prognosis of LACC used magnetic reso-
nance imaging (MRI) as the main data source, focusing on 
the morphological structure, cell density and hemodyna-
mics of the tumor [17-19]. Compared with MRI, �uorine-18-

18�uorodeoxyglucose ( F-FDG) positron emission tomogra-
phy/computed tomography (PET/CT) can realize one-stop 
whole-body scanning and visually display the metabolic ac-
tivity information of tumor lesions, which is crucial for evalu-
ating the biological characteristics and prognosis of tumors. 
It has become a recommended examination for evaluating 
lymph node and distant metastasis in patients with IB3 or 
higher stage cervical cancer [20].

18Herein, we constructed an F-FDG PET radiomics-based 
nomogram model for evaluating locally advanced cervical 
squamous cell carcinoma (LACSC) patients' progression-
free survival (PFS) and veri�ed its predictive performance. 
We hypothesized that our multidimensional information fu-
sion approach could more accurately facilitate the prognos-
tic prediction of LACSC patients' PFS than traditional single 
evaluation methods.

Materials and Methods

Participants
This study was approved by institutional Medical Ethics Com-

18mittee. Patients who underwent F-FDG PET/CT examina-
tion pre-CCRT at our institution for LACSC between 2018 and 

2021 were included in this retrospective analysis. Inclusion 
criteria: 1) Cervical mass biopsy, pathologically con�rmed as 
SCC; 2) FIGO stage was IB3-IVA; 3) Accept standardized CCRT; 
4) No antitumor therapy was received before PET/CT exami-
nation. Exclusion criteria: 1) Combined with other malignant 
tumors; 2) Incomplete clinical data or unclear PET images 
make it di�cult to identify lesions.

A total of 241 LACSC patients were included and randomly 
divided into a training set (n=168) and a validation set (n=73) 
in a 7:3 ratio (Figure1). All patients' clinical stages were cate-
gorized per the 2018 FIGO staging system [3].

Clinical data collection and processing
The clinical information of patients collected through the 
hospital electronic medical record and imaging system in-
cludes: age, body mass index (BMI), degree of tissue di�eren-
tiation, hematological indicators measured within 1 week 
before treatment [squamous cell carcinoma antigen (SCCA), 
hemoglobin (HGB), albumin (ALB), d-dimer, neutrophil to 
lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), 
lymphocyte to monocyte ratio (LMR), neutrophil to mono-
cyte ratio (NMR)], baseline PET/CT data [maximum diameter 
and metabolic parameters of primary tumor, lymph node 
metastasis (LNM) status and location].

CCRT regimen
Depending on their conditions, all patients received total 
pelvic external beam radiotherapy or para-aortic extended 
�eld radiotherapy (dose range=1.8~2.4Gy/day, for 5 da-
ys/week, totaling 50~67.2Gy). High dose rate brachytherapy 
was then administered (7Gy each time, once/week, totaling
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Figure 1. Flow chart of patient selection.



28-42Gy). Meanwhile, all patients received a weekly cisplatin 
2or nedaplatin (50mg/m ) dose of chemotherapy.

Follow-up program
Regular follow-up was performed post-CCRT, with the �rst 
review scheduled in the �rst month post-CCRT, and then on-
ce every 3 months in the �rst two years, every 6 months in 3-
5 years, and every year after 5 years. The review encompas-
sed physical examination, hematological examination, tu-
mor marker detection, imaging examination (B-ultrasound, 
MRI, CT, and PET/CT), and cervical exfoliative cytology. He-
rein, PFS was de�ned as the period from the date of treat-
ment initiation to the date of local recurrence, distant metas-
tasis, death, or last follow-up, whichever came �rst.

Equipment and imaging
All patients were scanned with GE Discovery 710 PET/CT 

18equipment. The imaging agent F-FDG was synthesized in 
our hospital using a medical cyclotron (HM-10HC) and an 
18F-FDG synthesizer system (F300E-2). Radiochemical purity 
was >95%. All patients were fasted for ≥6h before exami-
nation. After controlling the blood glucose concentration to 

18<11.1mmol/L, F-FDG (3.70-5.55MBq/kg of body weight) 
was injected through the elbow vein, with systemic imaging 
performed 60min post-injection. The scanning area was 
from the skull top to the middle of the femur. The CT scan pa-
rameters were a tube voltage of 120kV, a tube current of 110 
mA, and a slice thickness of 3 or 5mm. Notably, PET imaging 
was performed in a 3D acquisition mode, and 7-8 beds (1.5 
min/bed) were collected. After correcting for the non-uni-
form attenuation in the collected data, the image was fused 
and reconstructed using the ordered subset maximum ex-
pectation algorithm. With a threshold of 40% maximum 
standardized uptake value (SUV), the primary tumors' 
SUVmax, SUVmean, SUVpeak, metabolic tumor volume 
(MTV), and total lesion glycolysis (TLG) in PET/CT images 
were quanti�ed on the Medex workstation.

Radiomics analysis

Lesion segmentation
First, DICOM format PET images were imported into ITK-
SNAP (version 3.8) software [21]. Two seasoned nuclear me-
dicine physicians, each with more than �ve years of experi-
ence, independently outlined the region of interest (ROI) for 
the primary LACSC lesion. They ensured that the ROI deline-
ated the lesion as much as possible, while excluding necrotic 
tumor regions and parametrial tissue. To tackle di�culties in 
determining the lesion's boundaries, they �ne-tuned the 
image contrast and adjusted the axial position. Throughout 
the delineation process, neither physician had access to the 
patient's clinical information. To assess delineation consis-
tency, 30 patients were randomly selected, with each physi-
cian independently performing lesion ROI delineation.

Feature extraction
PyRadiomics, an open-source tool, was employed to con�-
gure image parameters and extract radiomics features, per 
the Initiative for standardization of imaging biomarkers [22]. 

All PET images were preprocessed, with the voxel spacing in 
X, Y, and Z directions resampled to 3mm×3mm×3mm. Abso-
lute intensity resampling and intensity discretization were 
set to 0~25SUV and 0.25 bin width, respectively. Eight di�e-
rent �ltering techniques were used: Laplacian of Gaussian 
(LOG), wavelet transform, square root, logarithm, exponen-
tial, gradient, and three-dimensional local binary patterns 
(LBP3D), all applied to all patients' images. Seven kinds of fe-
atures were extracted from both the original and �ltered 
images. They included �rst order, shape, gray level size zone 
matrix (GLSZM), gray level run length matrix (GLRLM), neig-
hborhood gray tone di�erence matrix (NGTDM), gray level 
co-occurrence matrix (GLCM), and gray level dependence 
matrix (GLDM).

Feature selection
First, the intraclass correlation coe�cient (ICC) was used to 
test the consistency of the radiomics features extracted 
from the ROI the two nuclear medicine physicians deline-
ated, and features with ICC >0.75 were retained for subsequ-
ent research. Second, all radiomics features were standardi-
zed using the Z-score, the Pearson correlation coe�cient 
was used to determine the correlation between radiomics 
features, and the recursive feature elimination method was 
used to retain only one feature when the correlation coe�-
cient between any two features exceeded 0.9. Finally, the Le-
ast Absolute Shrinkage and Selection Operator (LASSO)-
Cox regression and 10-fold cross-validation were used to 
screen out radiomics features most related to disease pro-
gression. 

Model construction
Using retained radiomics features and their corresponding 
co-e�cient weighting, we obtained a linear radiomics score 
(Rad-score) and constructed a radiomics model. The Rad-
scores and all clinical parameters were then subjected to 
univariate and multivariate Cox regression analyses to iden-
tify independent prognostic factors for LACSC progression, 
construct a combined model, and draw a nomogram (Fi-
gure 2). 

Statistical analysis
Statistical analyses were performed using SPSS (version 
26.0), R (version 4.3.1), and Python (version 3.9.7). The Kol-
mogorov-Smirnov test assessed data normality. Normally 
distributed data were expressed as mean±SD and compa-
red using the independent sample t-test; non-normally dis-
tributed data were expressed as median (IQR) and compa-
red using the Mann-Whitney U test. Count data were expres-
sed as n (%) and compared using the �² test or Fisher's exact 
test. The Kaplan-Meier method was employed for survival 
analysis, and the survival rate between groups was compa-
red using the Log-rank test. The COX proportional hazard 
model with forward stepwise selection was used for multi-
variate survival analysis to determine the independent 
prognostic factors of PFS in LACSC patients. The time-de-
pendent receiver operating characteristic (ROC) curve, area 
under the curve (AUC), and consistency index (C-index) 
were used to evaluate the model's predictive performance
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for PFS. The R software 'rms' package was used to draw the 
Nomogram, whose clinical applicability and prediction ac-
curacy were evaluated using decision curve analysis (DCA) 
and calibration curves, respectively. All statistical tests were 
two-sided, and results with P<0.05 were considered statisti-
cally signi�cant.

Results

Clinical data
The training and validation sets showed no signi�cant di�e-
rence in clinical indicators (P>0.05). The median follow-up ti-
me for all patients was 22.0 months (3-58 months). During 
follow-up, disease progression was observed in 40 (23.8%) 
and 21 (28.8%) patients in the training and validation sets, 
respectively (Table 1).

Screening of radiomics features and Rad-score calcu-
lation

18We extracted 2,016 radiomics features from F-FDG PET 
images. The average ICC value after the consistency test was 
0.978, and a total of 1986 characteristics with ICC ≥0.75 were 
included in the follow-up study. After Pearson correlation 
analysis, 371 features with the least redundancy were reta-
ined. Finally, after Lasso-Cox regression analysis, 5 PET radio-
mics features (1 �rst-order and 4 texture features) most rela-
ted to PFS were screened out, with a corresponding penalty 
coe�cient � of 0.211 (Supplementary Figure 1, Supplemen-
tal digital content 1). The heat map displays the correlation 

matrix of radiomics features, illustrating the Pearson correla-
tion coe�cient between each feature pair (Supplementary 
Figure 2, Supplemental digital content 1). The �ve radiomics 
features were used to calculate the Rad-score as follows:

Patients were categorized into two groups of di�erent 
risks of progression based on the optimal critical value of the 
Rad-score: Low progression risk (Rad-score <1) and high 
progression risk (Rad-score ≥1). The training set comprised 
63 and 105 patients categorized into the high- and low-risk 
groups, respectively, while the validation set comprised 28 
and 45 patients categorized into the high and low-risk gro-
ups, respectively. The training and validation sets both exhi-
bited statistically signi�cant di�erences in FIGO stage, pel-
vic LNM, tumor size, SUVpeak, MTV, TLG, SCCA, HGB, NLR, 
PLR and LMR between the high- and low-risk patient groups 
(P<0.05) (Supplementary Table 1 and Supplementary Table 
2, Supplemental digital content 2). Furthermore, the train-
ing set showed a signi�cantly lower PFS in the high-risk gro-
up than in the low-risk group, with the validation set exhibi-
ting similar results (P<0.05) (Figure 3).

Construction and validation of PFS prediction models
To facilitate the subsequent survival analysis, X-tile software 
was used to determine the optimal critical value of continu-
ous variables and convert them into a binary from [23]. The

Figure 2. Work�ow diagram of radiomics.
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Table 1. Baseline characteristics of patients in training and validation sets.

Characteristic Training set (n=168) Validation set (n=73) P value

Age 54.8±9.1 56.4±10.2 0.227

BMI 22.7±3.5 21.9±3.0 0.094

Histological grade 0.348

PD 87 (51.8) 33 (45.2)

MD+WD 81 (48.2) 40 (54.8)

FIGO stage 0.828

II 28 (16.7) 13 (17.8)

III 140 (83.3) 60 (82.2)

PLNM 0.888

No 72 (42.9) 32 (43.8)

Yes 96 (57.1) 41 (56.2)

PALNM 0.332

No 154 (91.7) 64 (87.7)

Yes 14 (8.3) 9 (12.3)

Tumor size 4.6 (3.8,6.0) 5.0 (4.3,5.8) 0.279

SUVmax 15.4 (11.5,19.5) 16.6 (13.9,19.6) 0.128

SUVmean 9.1 (6.7,11.7) 9.5 (7.8,12.1) 0.100

SUVpeak 11.6 (8.8,14.1) 12.2 (10.1,14.4) 0.110

MTV 19.4 (10.8,34.5) 24.2 (14.1,37.1) 0.318

TLG 179.6 (89.4,339.4) 240.2 (130.8,371.2) 0.144

SCCA 7.8 (2.9,23.7) 8.5 (3.3,24.7) 0.679

HGB 119.0 (102.0,128.7) 122.0 (111.2,128.0) 0.383

ALB 38.5 (35.5,40.1) 38.1 (35.4,40.2) 0.598

D-dimer 0.28 (0.13,0.52) 0.26 (0.11,0.65) 0.705

NLR 2.3 (1.7,3.5) 2.5 (1.7,4.3) 0.536

PLR 159.0 (121.6,216.7) 151.8 (123.2,217.1) 0.977

LMR 4.3 (3.2,5.7) 4.2 (2.9,5.2) 0.277

NMR 10.6 (8.5,13.0) 9.7 (8.4,12.7) 0.433

Disease progression 0.416

No 128 (76.2) 52 (71.2)

Yes 40 (23.8) 21 (28.8)

Note: Variables are presented as mean±SD or median (IQR) for continuous data and n (%) for categorical data. Abbreviation: BMI body mass index, PD poor 
di�erentiation, MD middle di�erentiation, WD well di�erentiation, FIGO international federation of gynecology and obstetrics, PLNM pelvic lymph node m-
etastasis, PALNM para-aortic lymph node metastasis, SUVmax maximal standardized uptake value, SUVmean mean standard uptake value, SUVpeak Peak 
standard uptake value, MTV metabolic tumor volume, TLG total lesion glucose, SCCA squamous Cell Carcinoma Antigen, HGB hemoglobin, ALB albumin, 
NLR neutrophil to lymphocyte ratio, PLR  platelet-to-Lymphocyte Ratio, LMR lymphocyte-to-monocyte ratio, NMR Neutrophil to monocyte ratio



Supplementary Figure 2. Correlation matrix heat map of optimal radiomics features, showing Pearson correlation coe�cient between each pair of radiomics features; 
radiomics features are reordered by unsupervised hierarchical clustering to visualize internal highly correlated features.

Supplementary  Figure 1. Screening of radiomics features. (a) 10-fold cross-validation method was used to select the optimal parameter � in LASSO-COX regression; (b) 
The selected radiomics features and their coe�cient maps.

Figure 3. Kaplan-Meier survival curve based on radiomics score in training set (a) and validation set (b).

93Hellenic Journal of Nuclear Medicine     September-December 2025•   www.nuclmed.gr 237

Original Article



93 Hellenic Journal of Nuclear Medicine     September-December 2025•   www.nuclmed.gr238

Original Article

Supplementary Table 1. Comparison of clinical characteristics between high-risk and low-risk patients in training set.

Characteristic Low-risk group(n=105) High-risk group (n=63) P value

Age 55.6±8.5 53.6±10.0 0.170

BMI 22.8±3.3 22.6±3.7 0.785

Histological grade 0.604

PD 56 (53.3) 31 (49.2)

MD+WD 49 (46.7) 32 (50.8)

FIGO stage 0.019

II 23 (21.9) 5 (7.9)

III 82 (78.1) 58 (92.1)

PLNM 0.024

No 52 (49.5) 20 (31.7)

Yes 53 (50.5) 43 (68.3)

PALNM 0.885

No 96 (91.4) 58 (92.1)

Yes 9 (8.6) 5 (7.9)

Tumor size 4.6 (3.8,6.0) 5.0 (4.3,5.8) <0.001

SUVmax 15.4 (11.5,19.5) 16.6 (13.9,19.6) 0.001

SUVmean 9.1 (6.7,11.7) 9.5 (7.8,12.1) 0.001

SUVpeak 11.6 (8.8,14.1) 12.2 (10.1,14.4) <0.001

MTV 19.4 (10.8,34.5) 24.2 (14.1,37.1) <0.001

TLG 179.6 (89.4,339.4) 240.2 (130.8,371.2) <0.001

SCCA 7.8 (2.9,23.7) 8.5 (3.3,24.7) <0.001

HGB 119.0 (102.0,128.7) 122.0 (111.2,128.0) <0.001

ALB 38.9 (36.6,40.8) 37.1 (34.3,39.6) 0.001

D-dimer 0.28 (0.13,0.52) 0.26 (0.11,0.65) 0.002

NLR 2.3 (1.7,3.5) 2.5 (1.7,4.3) <0.001

PLR 159.0 (121.6,216.7) 151.8 (123.2,217.1) 0.001

LMR 4.3 (3.2,5.7) 4.2 (2.9,5.2) <0.001

NMR 10.6 (8.5,13.0) 9.7 (8.4,12.7) 0.130

Note: Variables are presented as mean±SD or median (IQR) for continuous data and n (%) for categorical data. Abbreviations:BMI body mass index, PD po-
or di�erentiation, MD middle di�erentiation, WD well di�erentiation, FIGO international federation of gynecology and obstetrics, PLNM pelvic lymph node 
metastasis, PALNM para-aortic lymph node metastasis, SUVmax maximal standardized uptake value, SUVmean mean standard uptake value, SUVpeak 
Peak standard uptake value, MTV metabolic tumor volume, TLG total lesion glucose,SCCA squamous cell carcinoma antigen, HGB hemoglobin, ALB al-
bumin, NLR neutrophil to lymphocyte ratio, PLR platelet-to-Lymphocyte Ratio, LMR lymphocyte-to-monocyte ratio, NMR Neutrophil to monocyte ratio



Supplementary Table 2. Comparison of clinical characteristics between high-risk and low-risk patients in validation set.

Characteristic Low-risk group (n=45) High-risk group (n=28) P value

Age 58.4±9.2 53.3±11.1 0.039

BMI 22.2±2.8 21.5±3.3 0.331

Histological grade 0.106

PD 17 (37.8) 16 (57.1)

MD+WD 28 (62.2) 12 (42.9)

FIGO stage 0.005

II 13 (28.9) 0 (0.0)

III 32 (71.1) 28 (100.0)

PLNM 0.002

No 26 (57.8) 6 (21.4)

Yes 19 (42.2) 22 (78.6)

PALNM 0.003

No 44 (97.8) 20 (71.4)

Yes 1 (2.2) 8 (28.6)

Tumor size 4.5 (3.6,5.0) 6.3 (5.1,7.1) <0.001

SUVmax 15.0 (12.2,19.6) 16.9 (15.4,20.5) 0.060

SUVmean 9.5 (7.5,12.4) 9.7 (9.1,12.2) 0.279

SUVpeak 11.9 (9.1,14.4) 13.0 (11.7,15.0) 0.038

MTV 15.6 (8.3,24.2) 38.2 (30.2,49.8) <0.001

TLG 140.8 (71.1,231.8) 388.0 (305.4,494.4) <0.001

SCCA 6.5 (2.0,13.0) 20.6 (5.7,33.3) 0.004

HGB 125.0 (114.5,129.0) 114.0 (107.3,124.0) 0.002

ALB 38.3 (36.4,40.2) 36.6 (34.9,40.2) 0.210

D-dimer 0.26(0.12,0.56) 0.24 (0.11,0.78) 0.617

NLR 2.1 (1.5,3.4) 3.2 (2.4,4.7) 0.006

PLR 137.1 (115.1,204.8) 181.2 (136.1,244.4) 0.023

LMR 4.4 (3.1,6.1) 3.4 (2.8,4.6) 0.019

NMR 9.6 (8.1,12.0) 10.0 (8.5,14.0) 0.376

Note: Variables are presented as mean±SD or median (IQR) for continuous data and n (%) for categorical data. Abbreviations:BMI body mass index, PD po-or 
di�erentiation, MD middle di�erentiation, WD well di�erentiation, FIGO international federation of gynecology and obstetrics, PLNM pelvic lymph node 
metastasis, PALNM para-aortic lymph node metastasis, SUVmax maximal standardized uptake value, SUVmean mean standard uptake value, SUVpeak Pe-
ak standard uptake value, MTV metabolic tumor volume, TLG total lesion glucose,SCCA squamous cell carcinoma antigen, HGB hemoglobin, ALB albumin, 
NLR neutrophil to lymphocyte ratio, PLR platelet-to-Lymphocyte Ratio, LMR lymphocyte-to-monocyte ratio, NMR Neutrophil to monocyte ratio
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training set was subjected to Univariate Cox regression ana-
lysis, revealing several factors that were signi�cantly associ-
ated with PFS, including FIGO stage, SUVmean, TLG, HGB, 
and Rad-score(P<0.05). These factors were then subjected 
to Multivariate Cox regression analysis, revealing that FIGO 
stage and Rad-score were the independent predictors of 
PFS in LACSC patients(P<0.05) (Table 2), based on which a 
combined model was constructed.

The C-index values of the FIGO stage, Rad-score, and com-
bined model were 0.586 (0.545-0.627), 0.692 (0.606-0.778), 
and 0.727 (0.647-0.807) in the training set, and 0.612 (0.559-

0.665), 0.668 (0.558-0.778), and 0.698 (0.596-0.800) in the va-
lidation set, respectively (Table 3).

The AUCs for FIGO stage in predicting PFS at 12, 18, and 24 
months were 0.596, 0.592, and 0.615 in the training set, and 
0.614, 0.628, and 0.667 in the validation set. For Rad-score, 
the AUC were 0.778, 0.704, and 0.670 in the training set, and 
0.646, 0.723, and 0.691 in the validation set. The combined 
model achieved AUC of 0.805, 0.738, and 0.719 in the train-
ing set, and 0.670, 0.744, and 0.741 in the validation set (Fi-
gure 4).

Table 2. Univariate and multivariate COX regression analysis of the training set.

Characteristic HR (95% CI) Pvalue HR (95% CI) P value

Age (<55 vs ≥55) 0.779 (0.419-1.449) 0.430

BMI (<24 vs ≥24) 1.041 (0.529-2.048) 0.907

Histological grade (PD vs MD+WD) 1.503 (0.803-2.814) 0.202

FIGO stage (II vs III) 10.219 (1.402-74.506) 0.022 7.949 (1.083-58.344) 0.042

PLNM (no vs yes) 1.285 (0.677-2.437) 0.443

PA LNM (no vs yes) 1.262 (0.449-3.548) 0.659

Tumor size (<3 vs ≥3) 1.718 (0.414-7.131) 0.456

SUVmax (<11.8 vs ≥11.8) 1.011 (0.504-2.026) 0.976

SUVmean (<11.8 vs ≥11.8) 1.998 (1.053-3.793) 0.034

SUVpeak (<18.1 vs ≥18.1) 1.295 (0.507-3.311) 0.589

MTV (<10.8 vs ≥10.8) 1.084 (0.515-2.278) 0.832

TLG (<178.7 vs ≥178.7) 1.984 (1.035-3.800) 0.039

SCCA (<1.5 vs ≥1.5) 0.931 (0.390-2.221) 0.872

HGB (<123 vs ≥123) 0.400 (0.195-0.818) 0.012

ALB (<40.3 vs ≥40.3) 0.760 (0.336-1.719) 0.509

D--dimer (<0.4 vs ≥0.4) 1.772 (0.940-3.341) 0.077

NLR (<2.11 vs ≥2.11) 0.978 (0.510-1.875) 0.946

PLR (<250 vs ≥250) 1.594 (0.705-3.605) 0.263

LMR (<5.2 vs ≥5.2) 0.753 (0.368-1.540) 0.437

NMR (<11 vs ≥11) 1.806 (0.951-3.428) 0.071

Rad-score 5.948 (3.388-10.444) <0.001 5.269 (2.961-9.378) <0.001

Note: BMI body mass index, PD poor di�erentiation, MD middle di�erentiation, WD well di�erentiation, FIGO international federation of gynecology and ob-
stetrics, PLNM pelvic lymph node metastasis, PALNM para-aortic lymph node metastasis, SUVmax maximal standardized uptake value, SUVmean mean 
standard uptake value, SUVpeak Peak standard uptake value, MTV metabolic tumor volume, TLG total lesion glucose,SCCA squamous cell carcinoma anti-
gen, HGB hemoglobin, ALB albumin, NLR neutrophil to lymphocyte ratio, PLR platelet-to-Lymphocyte Ratio, LMR lymphocyte-to-monocyte ratio, NMR Ne-
utrophil to monocyte ratio



Table 3. Predictive performance of each model for PFS in patients with LACSC C-index (95% CI).

Model Training set Validation set

FIGO stage 0.586 (0.545-0.627) 0.612 (0.559-0.665)

Rad-score 0.692 (0.606-0.778) 0.668 (0.558-0.778)

Combined model 0.727 (0.647-0.807) 0.698 (0.596-0.800)

Figure 4. Prediction performance of the three models. (a), (b) and (c) were the ROC curves for predicting PFS of LACSC patients at 12,18 and 24 months in the training set, 
respectively. (d), (e) and (f) were the ROC curves for predicting PFS of LACSC patients at 12,18 and 24 months in the validation set, respectively.

Nomogram establishment and evaluation
A visual nomogram was built using the Rad-score and FIGO 
stage (Figure 5). The calibration curve showed that the no-
mogram model had a good consistency between the predic-
ted and actual probabilities of disease progression (Supple-
mentary Figure 3, Supplemental digital content 1), and the 
decision curve revealed that the nomogram model could of-
fer more net clinical bene�t than the FIGO stage (Supple-
mentary Figure 4, Supplemental digital content 1).

Correlation analysis between Rad-score and PET/CT 
metabolic parameters
The Rad-scores and PET/CT metabolic parameters of all pa-
tients in the study cohort were analyzed using Spearman 
correlation analysis. According to the results, the Rad-score 
correlated weakly with SUVmax, SUVmean, and SUVpeak (R= 
0.33,0.30,0.41, P<0.001), moderately with MTV (R=0.77, P< 
0.001), and strongly with TLG (R=0.81, P<0.001) (Supple-

mentary Figure 5, Supplemental digital content 1).

Discussion

18Herein, we developed and validated a pre-CCRT F-FDG PET 
radiomics-based nomogram model for the tailored predic-

18tion of PFS in LACSC patients. We found that the baseline F-
FDG PET radiomics-based model could help physicians stra-
tify patient risk and that the integrated model encompassing 
the clinical stage not only performed well in predicting the 
PFS of LACSC patients but also o�ered more net clinical be-
ne�t. 

Radiomics can facilitate the diagnosis, e�cacy evaluation, 
and prognostic prediction of cervical cancer [15, 24, 25]. Lucia 
et al. (2018) [15] found that entropy-GLCMfrom functional 
imaging DWI-MRI and gray level nonuniformity (GLNU)-GLRL
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Figure 5. Nomogram model for predicting PFS based on Rad-score and FIGO stage.

Supplementary Figure 3. (a), (b), and (c) are the nomogram calibration curves of PFS for 12 months, 18 months, and 24 months in the training set, respectively. (d), (e), 
and (f) are the nomogram calibration curves of PFS for 12 months, 18 months, and 24 months in the validation set, respectively.

from PET were independent predictors of LACC recurrence 
and local regional control, with a signi�cantly higher predic-
tive capability than that of conventional clinical parameters. 
Furthermore, Liu et al. (2024) [26] used three CT radiomics 
features, one PET radiomics feature and one clinical feature to 
construct a clinical radiomics model for predicting the 3-year 
PFS of LACC patients post-CCRT, demonstrating good 
performance. The AUC values of the training, internal test, 
and external validation sets were 0.661, 0.718 and 0.775, res-
pectively, and the C-index values were 0.698, 0.724 and 0.705, 

respectively, which align with our �ndings. Herein, we used a 
PET radiomics model to predict the PFS of LACSC patients at 
12, 18, and 24 months, showing good performance, with vali-
dation set AUC values of 0.646, 0.723, and 0.691, respectively. 
Notably, the combined model integrating the FIGO stage of-
fered more bene�ts. Among the currently known LACC-rela-
ted prognostic factors, LNM is a well-documented indepen-
dent predictor. However, we did not �nd such a correlation; 
hence, LNM was not included in our model construction. This 
phenomenon could be attributed to several factors. Speci�-



Supplementary Figure 4.  (a), (b) and (c) were the decision curve analysis of 12-month, 18-month and 24-month PFS for nomogram model and FIGO staging system, res-
pectively.

Supplementary Figure 5. Correlation between Rad-score and PET traditional metabolic parameters SUVmax (a), SUVmean (b), SUVpeak (c), MTV (d), TLG (e). The spe-
arman rank correlation test was used to evaluate the relationship between variables.

18cally, F-FDG PET/CT has moderate sensitivity (72%) and rela-
tively high speci�city (96%) in detecting LNM, implying that it 
could show poor stability when detecting para-aortic LNM 
[27, 28]. Second, we only considered the location of LNM and 
not the number of LNM. Olthof et al. (2022) [29] reported that 
the number of positive lymph nodes could be used to further 
stratify patient risk in cervical cancer patients. Finally, this stu-
dy's limited sample size and patient selection bias could also 
have been in�uencing factors.

Previously, Kidd et al. (2007) [30] showed that higher 
SUVmax of cervical cancer primary lesions was associated 
with poor survival and increased LNM risk. Conversely, we fo-
und that SUVmax is not an independent predictor of PFS in 
LACSC patients, potentially because tumor stage and histo-

18logical type could a�ect F-FDG uptake in cancer tissues. 
Furthermore, SUVmax is just a single voxel value that does 
not re�ect the entire tumor's metabolism. Markus et al. 
(2023) [9] found that only MTV and TLG among the PET/CT 
metabolic parameters before treatment correlated with re-
currence and overall survival in cervical cancer. Moreover, 
Herrera et al. (2016) [10] and Wang et al. (2021) [31] reported 
that primary lesion's TLG could be an independent prognos-
tic marker for PFS and distant metastasis-free survival in cer-
vical cancer. Herein, our univariate analysis revealed that 
both SUVmean and TLG correlated with PFS, although they 
were not independent predictors in multivariate analysis. 
Furthermore, the correlation analysis between PET/CT meta-
bolic parameters and Rad-scores showed that SUVmean and
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TLG correlated weakly and strongly with Rad-score, res-
pectively. Therefore, our study revealed that compared with 
traditional metabolic parameters, radiomics features extrac-
ted from PET images were more representative and could 
better identify tumor heterogeneity.

Herein, the PET radiomics model comprised one �rst-or-
der feature and four texture features.  Among them, square _ 
glszm _GrayLevelNonUniformity has the largest weight in 
our model, indicating that the GLNU from PET images was 
an important prognostic factor for PFS in cervical cancer pa-
tients, which is consistent with previous research [5, 15, 26]. 
Our results indicate that the uniformity of gray level distribu-
tion in PET images correlates closely with the invasiveness of 
LACSC. Invasive tumor lesions often show uneven gray level 
distribution on PET images, re�ecting signi�cant variations 
in tumor regions and highlighting blurred, irregular edges. 
Areas of high metabolic activity absorb more tracers, cre-
ating hot spots that intensify with increasing tumor invasi-
veness. Furthermore, due to the rapid growth and in�ltra-
tion of highly invasive tumors, there is often no clear boun-
dary between the tumor edge and surrounding normal tis-
sue, manifested as a gradual gray value transition on PET 
images, rather than a distinct boundary [32, 33]. Highly inva-
sive tumors often induce vascularization to meet their rapid-
ly growing metabolic needs. These new blood vessels may 
appear as additional hot spots on PET images, further aggra-
vating the uneven distribution of gray levels. 

The occurrence and development of tumors often involve 
changes in the body's immune status, increased in�amma-
tory response, and abnormal activation of the coagulation 
system [34, 35]. Research has shown that blood metabolites 
or in�ammatory biomarkers are vital predictors of prognosis 
in cervical cancer patients [36, 37]. However, in this study, in-
�ammatory biomarkers are not independent factors a�ec-
ting the prognosis of cervical cancer, which may be related 
to their non-speci�city. Some scholars believe that anemia 
may lead to tumor hypoxia, thereby promoting tumor radio-
resistance [38]. Chen et al. (2015) [39] found that a low HGB 
level before treatment correlated with poor local control in 
LACC patients. Additionally, Liu et al. (2022) [40] found that 
low HGB levels before CCRT were an independent risk factor 
for PFS in LACC patients. Herein, our univariate analysis re-
sults showed that the HGB level before treatment correlated 
with the PFS of LACSC patients, although it was not an inde-
pendent prognostic factor for LACSC in multivariate ana-
lysis. This phenomenon could be attributed to the fact that 
the inclusion of Rad-score somewhat impacted the outco-
me. Nonetheless, a previous study revealed that anemia was 
not an independent predictor of cervical cancer recurrence 
post-CCRT, whereas anemia during radiotherapy was asso-
ciated with disease-speci�c survival [41].

This study had some notable limitations. First, it was a 
small-sample, single-institution, retrospective study. Se-
cond, we only analyzed the short-term prognosis. Finally, 
the tumor ROI was manually delineated in this study. Altho-
ugh the intra-group consistency test revealed that the ex-
tracted radiomics features were highly robust, the process 
was time-consuming and labor-intensive. Therefore, it is ne-
cessary to carry out multi-center, long-term prognosis rese-
arch and explore automatic segmentation technology in the 

future to improve the prognosis of patients.
18In conclusion, the F-FDG PET-based Rad-score can more 

accurately predict the PFS of LACSC CCRT patients, helping 
clinicians to further stratify patient risk. Meanwhile, the 
combined nomogram model encompassing the FIGO stage 
could facilitate a more accurate and personalized asses-
sment of the prognosis of LACSC patients, thus improving 
clinical bene�ts.
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