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Abstract

Objective: To develop a fluorine-18-fluorodeoxyglucose (“°F-FDG) positron emission tomography (PET) ra-
diomics-based nomogram model for predicting progression-free survival (PFS) in locally advanced cervical
squamous cell carcinoma (LACSC) patients undergoing concurrent chemoradiotherapy (CCRT). Materials
and Methods: A retrospective study included 241 LACSC patients treated with CCRT, divided into training
(n=168) and validation (n=73) sets. Lesion segmentation, radiomics feature extraction and screening were
performed on “F-FDG PET images of each patient, and radiomics scores (Rad-scores) were calculated. Univa-
riate and multivariate Cox regression analyses were used to identify independent prognostic factors and cre-
ate a combined model and nomogram. Predictive performance was assessed using time-dependent rece-
iver operating characteristic (ROC) curves, area under the curve (AUC), and consistency index (C-index). Ca-
libration curves evaluated nomogram accuracy, and decision curve analysis (DCA) assessed nomogram cli-
nical applicability. Results: The Rad-score calculated from five optimal radiomics features and FIGO stage
were independent predictors of PFS in LACSC patients. The C-index values for the FIGO stage, Rad-score, and
combined model were 0.586,0.692, and 0.727 in the training set, and 0.612, 0.668, and 0.698 in the validation
set, respectively. The combined model showed excellent predictive ability for PFS at 12, 18, and 24 months,
with training set AUC of 0.805, 0.738, and 0.719, and validation set AUC of 0.670, 0.744, and 0.741, respecti-
vely. The calibration curves confirmed a good agreement between predicted and actual progression proba-
bilities, with DCA revealing significant clinical net benefits. Conclusion: The "“F-FDG PET radiomics-based
nomogram effectively predicted PFS in LACSC patients and could support individualized treatment deci-
sions and accurate prognostic evaluations.
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Introduction

ervical cancer, the fourth most common malignancy in women globally [1], is pre-

dominantly squamous cell carcinoma (SCC), accounting for 70% of cases [2].The

2018 International Federation of Gynecology and Obstetrics (FIGO) staging system
classifies IB3-IVA as locally advanced cervical cancer (LACC), representing over two-thirds
of cases, with concurrent chemoradiotherapy (CCRT) as the standard treatment [3, 4].
Through CCRT, although 70%-90% of patients achieving complete remission, about one-
third experience recurrence within two years, with a median post-recurrence survival of
10-12 months [5]. Therefore, early identification of high-risk patients for personalized tre-
atment adjustments, such as dose escalation or alternative therapies, is crucial to reduce
treatment failure and recurrence.

Previous studies link clinicopathological indicators like histological type, tumor size, and
lymph node metastasis to LACC prognosis [6-8]. However, patients with similar clinicopa-
thological features often have divergent clinical outcomes, highlighting the need for more
precise prognostic biomarkers to enhance treatment management and patient survival.
Given that the current LACC-related treatment relies heavily on imaging evaluations, so-
me scholars suggest using functional imaging parameters for risk stratification and survi-
val rate prediction in cervical cancer patients [9, 10]. Nonetheless, partial studies reported
that such indicators are unstable and vary with different quantitative techniques [11, 12].

Radiomics, a promising translational research field, extracts imaging features from me-
dicalimages and integrates machine learning to correlate high-through put imaging mar-
kers with biological data, improving disease interpretation and management [13]. Recen-
tly, radiomics-based imaging markers have made significant progress in the auxiliary di-
agnosis, efficacy evaluation and prognosis prediction of cervical cancer [14-16]. However,
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most of the previous studies on the correlation between ra-
diomics and the prognosis of LACC used magnetic reso-
nance imaging (MRI) as the main data source, focusing on
the morphological structure, cell density and hemodyna-
mics of the tumor [17-19]. Compared with MRI, fluorine-18-
fluorodeoxyglucose ("°F-FDG) positron emission tomogra-
phy/computed tomography (PET/CT) can realize one-stop
whole-body scanning and visually display the metabolicac-
tivity information of tumor lesions, which is crucial for evalu-
ating the biological characteristics and prognosis of tumors.
It has become a recommended examination for evaluating
lymph node and distant metastasis in patients with IB3 or
higherstage cervical cancer[20].

Herein, we constructed an "“F-FDG PET radiomics-based
nomogram model for evaluating locally advanced cervical
squamous cell carcinoma (LACSC) patients' progression-
free survival (PFS) and verified its predictive performance.
We hypothesized that our multidimensional information fu-
sion approach could more accurately facilitate the prognos-
tic prediction of LACSC patients' PFS than traditional single
evaluation methods.

Materialsand Methods

Participants

This study was approved by institutional Medical Ethics Com-
mittee. Patients who underwent *F-FDG PET/CT examina-
tion pre-CCRT at our institution for LACSC between 2018 and

2021 were included in this retrospective analysis. Inclusion
criteria: 1) Cervical mass biopsy, pathologically confirmed as
SCGC; 2) FIGO stage was IB3-IVA; 3) Accept standardized CCRT;
4) No antitumor therapy was received before PET/CT exami-
nation. Exclusion criteria: 1) Combined with other malignant
tumors; 2) Incomplete clinical data or unclear PET images
make it difficult to identify lesions.

Atotal of 241 LACSC patients were included and randomly
divided into a training set (h=168) and a validation set (n=73)
in a 7:3 ratio (Figure1). All patients' clinical stages were cate-
gorized per the 2018 FIGO staging system [3].

Clinical data collection and processing

The clinical information of patients collected through the
hospital electronic medical record and imaging system in-
cludes: age, body mass index (BMI), degree of tissue differen-
tiation, hematological indicators measured within 1 week
before treatment [squamous cell carcinoma antigen (SCCA),
hemoglobin (HGB), albumin (ALB), d-dimer, neutrophil to
lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR),
lymphocyte to monocyte ratio (LMR), neutrophil to mono-
cyte ratio (NMR)], baseline PET/CT data [maximum diameter
and metabolic parameters of primary tumor, lymph node
metastasis (LNM) status and location].

CCRTregimen

Depending on their conditions, all patients received total
pelvic external beam radiotherapy or para-aortic extended
field radiotherapy (dose range=1.8~2.4Gy/day, for 5 da-
ys/week, totaling 50~67.2Gy). High dose rate brachytherapy
was then administered (7Gy each time, once/week, totaling

Patients with cervical cancer who received '"*F-FET/CT before CCRT
between January 2018 and December 2021 (n=1022)

IA-IB2 or IVB stage (n=184)
Incomplete treatment {n=508)

Patients with locally advanced cervical squamous
cell carcinoma who treated with definitive
curative O

Combined with other malignant
tumor history (n=10)
Other pathological types (n=13)

RT (n=307)

Incomplete clinical data (n=57)
Poor image quality of PET {n=9)

Final inclusion (n=241) ‘

Training cohort
(n=168)

Figure 1. Flow chart of patient selection.

Validation cohort
(n=73)
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28-42Gy). Meanwhile, all patients received a weekly cisplatin
ornedaplatin (50mg/m’) dose of chemotherapy.

Follow-up program

Regular follow-up was performed post-CCRT, with the first
review scheduled in the first month post-CCRT, and then on-
ce every 3 months in the first two years, every 6 months in 3-
5 years, and every year after 5 years. The review encompas-
sed physical examination, hematological examination, tu-
mor marker detection, imaging examination (B-ultrasound,
MRI, CT, and PET/CT), and cervical exfoliative cytology. He-
rein, PFS was defined as the period from the date of treat-
mentinitiation to the date of local recurrence, distant metas-
tasis, death, or last follow-up, whichever camefirst.

Equipmentandimaging

All patients were scanned with GE Discovery 710 PET/CT
equipment. The imaging agent "*F-FDG was synthesized in
our hospital using a medical cyclotron (HM-10HC) and an
"F-FDG synthesizer system (F300E-2). Radiochemical purity
was >95%. All patients were fasted for >6h before exami-
nation. After controlling the blood glucose concentration to
<11.1mmol/L, "F-FDG (3.70-5.55MBq/kg of body weight)
was injected through the elbow vein, with systemicimaging
performed 60min post-injection. The scanning area was
from the skull top to the middle of the femur. The CT scan pa-
rameters were a tube voltage of 120kV, a tube currentof 110
mA, and a slice thickness of 3 or 5mm. Notably, PET imaging
was performed in a 3D acquisition mode, and 7-8 beds (1.5
min/bed) were collected. After correcting for the non-uni-
form attenuation in the collected data, the image was fused
and reconstructed using the ordered subset maximum ex-
pectation algorithm. With a threshold of 40% maximum
standardized uptake value (SUV), the primary tumors'
SUVmax, SUVmean, SUVpeak, metabolic tumor volume
(MTV), and total lesion glycolysis (TLG) in PET/CT images
were quantified on the Medex workstation.

Radiomics analysis

Lesion segmentation

First, DICOM format PET images were imported into ITK-
SNAP (version 3.8) software [21]. Two seasoned nuclear me-
dicine physicians, each with more than five years of experi-
ence, independently outlined the region of interest (ROI) for
the primary LACSC lesion.They ensured that the ROl deline-
atedthelesionas much as possible, while excluding necrotic
tumor regions and parametrial tissue. To tackle difficultiesin
determining the lesion's boundaries, they fine-tuned the
image contrast and adjusted the axial position. Throughout
the delineation process, neither physician had access to the
patient's clinical information. To assess delineation consis-
tency, 30 patients were randomly selected, with each physi-
cianindependently performing lesion ROl delineation.

Feature extraction

PyRadiomics, an open-source tool, was employed to confi-
gure image parameters and extract radiomics features, per
the Initiative for standardization of imaging biomarkers [22].

All PET images were preprocessed, with the voxel spacingin
X,Y,and Z directions resampled to 3mmx3mmx3mm. Abso-
lute intensity resampling and intensity discretization were
set to 0~25SUV and 0.25 bin width, respectively. Eight diffe-
rent filtering techniques were used: Laplacian of Gaussian
(LOG), wavelet transform, square root, logarithm, exponen-
tial, gradient, and three-dimensional local binary patterns
(LBP3D), all applied to all patients'images. Seven kinds of fe-
atures were extracted from both the original and filtered
images. They included first order, shape, gray level size zone
matrix (GLSZM), gray level run length matrix (GLRLM), neig-
hborhood gray tone difference matrix (NGTDM), gray level
co-occurrence matrix (GLCM), and gray level dependence
matrix (GLDM).

Feature selection

First, the intraclass correlation coefficient (ICC) was used to
test the consistency of the radiomics features extracted
from the ROI the two nuclear medicine physicians deline-
ated, and features with ICC >0.75 were retained for subsequ-
ent research. Second, all radiomics features were standardi-
zed using the Z-score, the Pearson correlation coefficient
was used to determine the correlation between radiomics
features, and the recursive feature elimination method was
used to retain only one feature when the correlation coeffi-
cient between any two features exceeded 0.9. Finally, the Le-
ast Absolute Shrinkage and Selection Operator (LASSO)-
Cox regression and 10-fold cross-validation were used to
screen out radiomics features most related to disease pro-
gression.

Model construction

Using retained radiomics features and their corresponding
co-efficient weighting, we obtained a linear radiomics score
(Rad-score) and constructed a radiomics model. The Rad-
scores and all clinical parameters were then subjected to
univariate and multivariate Cox regression analyses to iden-
tify independent prognostic factors for LACSC progression,
construct a combined model, and draw a nomogram (Fi-
gure2).

Statistical analysis

Statistical analyses were performed using SPSS (version
26.0), R (version 4.3.1), and Python (version 3.9.7). The Kol-
mogorov-Smirnov test assessed data normality. Normally
distributed data were expressed as mean+SD and compa-
red using the independent sample t-test; non-normally dis-
tributed data were expressed as median (IQR) and compa-
red using the Mann-Whitney U test. Count data were expres-
sed as n (%) and compared using the xz test or Fisher's exact
test. The Kaplan-Meier method was employed for survival
analysis, and the survival rate between groups was compa-
red using the Log-rank test. The COX proportional hazard
model with forward stepwise selection was used for multi-
variate survival analysis to determine the independent
prognostic factors of PFS in LACSC patients. The time-de-
pendent receiver operating characteristic (ROC) curve, area
under the curve (AUC), and consistency index (C-index)
were used to evaluate the model's predictive performance
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Figure 2. Workflow diagram of radiomics.

for PFS. The R software 'rms' package was used to draw the
Nomogram, whose clinical applicability and prediction ac-
curacy were evaluated using decision curve analysis (DCA)
and calibration curves, respectively. All statistical tests were
two-sided, and results with P<0.05 were considered statisti-
cally significant.

Results

Clinicaldata

The training and validation sets showed no significant diffe-
rencein clinicalindicators (P>0.05). The median follow-up ti-
me for all patients was 22.0 months (3-58 months). During
follow-up, disease progression was observed in 40 (23.8%)
and 21 (28.8%) patients in the training and validation sets,
respectively (Table 1).

Screening of radiomics features and Rad-score calcu-
lation

We extracted 2,016 radiomics features from "“F-FDG PET
images.The average ICC value after the consistency test was
0.978,and a total of 1986 characteristics with ICC >0.75 were
included in the follow-up study. After Pearson correlation
analysis, 371 features with the least redundancy were reta-
ined. Finally, after Lasso-Cox regression analysis, 5 PET radio-
mics features (1 first-order and 4 texture features) most rela-
ted to PFS were screened out, with a corresponding penalty
coefficient A of 0.211 (Supplementary Figure 1, Supplemen-
tal digital content 1). The heat map displays the correlation

matrix of radiomics features, illustrating the Pearson correla-
tion coefficient between each feature pair (Supplementary
Figure 2, Supplemental digital content 1). The five radiomics
features were used to calculate the Rad-score as follows:

Rad_score = —0.005731 x Ibp_3D_k_ngtdm_Contrast + 0.004818
X exponential_glszm_GrayLevelNonUniformity + 0.038413
X gradient_firstorder_Kurtosis + 0.041068
x wavelet_HHH_glszm_LargeAreaHighGrayLevelEmphasis 4+ 0.088484
X square_glszm_GrayLevelNonUniformity

Patients were categorized into two groups of different
risks of progression based on the optimal critical value of the
Rad-score: Low progression risk (Rad-score <1) and high
progression risk (Rad-score >1). The training set comprised
63 and 105 patients categorized into the high- and low-risk
groups, respectively, while the validation set comprised 28
and 45 patients categorized into the high and low-risk gro-
ups, respectively. The training and validation sets both exhi-
bited statistically significant differences in FIGO stage, pel-
vic LNM, tumor size, SUVpeak, MTV, TLG, SCCA, HGB, NLR,
PLRand LMR between the high-and low-risk patient groups
(P<0.05) (Supplementary Table 1 and Supplementary Table
2, Supplemental digital content 2). Furthermore, the train-
ing set showed a significantly lower PFS in the high-risk gro-
up than in the low-risk group, with the validation set exhibi-
ting similar results (P<0.05) (Figure 3).

Construction and validation of PFS prediction models
To facilitate the subsequent survival analysis, X-tile software
was used to determine the optimal critical value of continu-
ous variables and convert them into a binary from [23]. The
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Table 1. Baseline characteristics of patients in training and validation sets.

Characteristic Training set (n=168) Validation set (n=73) P value
Age 54.8+9.1 56.4+10.2 0.227
BMI 22.743.5 21.943.0 0.094
Histological grade 0.348
PD 87 (51.8) 33 (45.2)
MD+WD 81 (48.2) 40 (54.8)
FIGO stage 0.828
Il 28 (16.7) 13 (17.8)
1l 140 (83.3) 60 (82.2)
PLNM 0.888
No 72 (42.9) 32 (43.8)
Yes 96 (57.1) 41 (56.2)
PALNM 0.332
No 154 (91.7) 64 (87.7)
Yes 14 (8.3) 9 (12.3)
Tumor size 4.6 (3.8,6.0) 5.0 (4.3,5.8) 0.279
SUVmax 15.4 (11.5,19.5) 16.6 (13.9,19.6) 0.128
SUVmean 9.1(6.7,11.7) 9.5(7.8,12.1) 0.100
SUVpeak 11.6 (8.8,14.1) 12.2 (10.1,14.4) 0.110
MTV 19.4 (10.8,34.5) 242 (14.1,37.1) 0.318
TLG 179.6 (89.4,339.4) 240.2 (130.8,371.2) 0.144
SCCA 7.8(2.9,23.7) 8.5(3.3,24.7) 0.679
HGB 119.0 (102.0,128.7) 122.0 (111.2,128.0) 0.383
ALB 38.5(35.5,40.1) 38.1(35.4,40.2) 0.598
D-dimer 0.28 (0.13,0.52) 0.26 (0.11,0.65) 0.705
NLR 2.3(1.7,3.5) 25(1.7,4.3) 0.536
PLR 159.0 (121.6,216.7) 151.8 (123.2,217.1) 0.977
LMR 43(3.2,5.7) 4.2(29,5.2) 0.277
NMR 10.6 (8.5,13.0) 9.7 (8.4,12.7) 0.433
Disease progression 0.416
No 128 (76.2) 52 (71.2)
Yes 40 (23.8) 21(28.8)

Note: Variables are presented as mean+SD or median (IQR) for continuous data and n (%) for categorical data. Abbreviation: BMI body mass index, PD poor
differentiation, MD middle differentiation, WD well differentiation, FIGO international federation of gynecology and obstetrics, PLNM pelvic lymph node m-
etastasis, PALNM para-aortic lymph node metastasis, SUVYmax maximal standardized uptake value, SUVmean mean standard uptake value, SUVpeak Peak
standard uptake value, MTV metabolic tumor volume, TLG total lesion glucose, SCCA squamous Cell Carcinoma Antigen, HGB hemoglobin, ALB albumin,
NLR neutrophilto lymphocyteratio, PLR platelet-to-Lymphocyte Ratio, LMR lymphocyte-to-monocyte ratio, NMR Neutrophilto monocyte ratio
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Supplementary Figure 2. Correlation matrix heat map of optimal radiomics features, showing Pearson correlation coefficient between each pair of radiomics features;
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Supplementary Table 1. Comparison of clinical characteristics between high-risk and low-risk patients in training set.

Characteristic Low-risk group(n=105) High-risk group (n=63) P value
Age 55.6+8.5 53.6+£10.0 0.170
BMI 22.843.3 22.643.7 0.785
Histological grade 0.604
PD 56 (53.3) 31(49.2)

MD+WD 49 (46.7) 32 (50.8)

FIGO stage 0.019
Il 23 (21.9) 5(7.9)

11 82 (78.1) 58 (92.1)

PLNM 0.024
No 52 (49.5) 20 (31.7)

Yes 53 (50.5) 43 (68.3)

PALNM 0.885
No 96 (91.4) 58 (92.1)

Yes 9 (8.6) 5(7.9)

Tumor size 4.6 (3.8,6.0) 5.0 (4.3,5.8) <0.001
SUVmax 15.4 (11.5,19.5) 16.6 (13.9,19.6) 0.001
SUVmean 9.1 (6.7,11.7) 9.5(7.8,12.1) 0.001
SUVpeak 11.6 (8.8,14.1) 12.2(10.1,14.4) <0.001
MTV 19.4 (10.8,34.5) 24.2 (14.1,37.1) <0.001
TLG 179.6 (89.4,339.4) 240.2 (130.8,371.2) <0.001
SCCA 7.8(2.9,23.7) 8.5(3.3,24.7) <0.001
HGB 119.0 (102.0,128.7) 122.0 (111.2,128.0) <0.001
ALB 38.9 (36.6,40.8) 37.1(34.3,39.6) 0.001
D-dimer 0.28 (0.13,0.52) 0.26 (0.11,0.65) 0.002
NLR 2.3(1.7,3.5) 25(1.7,4.3) <0.001
PLR 159.0 (121.6,216.7) 151.8 (123.2,217.1) 0.001
LMR 4.3 (3.2,5.7) 4.2(2.9,5.2) <0.001
NMR 10.6 (8.5,13.0) 9.7 (8.4,12.7) 0.130

Note: Variables are presented as mean+SD or median (IQR) for continuous data and n (%) for categorical data. Abbreviations:BMI body mass index, PD po-
or differentiation, MD middle differentiation, WD well differentiation, FIGO international federation of gynecology and obstetrics, PLNM pelvic lymph node
metastasis, PALNM para-aortic lymph node metastasis, SUVmax maximal standardized uptake value, SUVmean mean standard uptake value, SUVpeak
Peak standard uptake value, MTV metabolic tumor volume, TLG total lesion glucose,SCCA squamous cell carcinoma antigen, HGB hemoglobin, ALB al-
bumin, NLR neutrophil to lymphocyte ratio, PLR platelet-to-Lymphocyte Ratio, LMR lymphocyte-to-monocyte ratio, NMR Neutrophil to monocyte ratio
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Supplementary Table 2. Comparison of clinical characteristics between high-riskand low-risk patientsin validation set.

Characteristic Low-risk group (n=45) High-risk group (n=28) P value
Age 58.419.2 53.3+11.1 0.039

BMI 22.242.8 21.5+3.3 0.331

Histological grade 0.106

PD 17 (37.8) 16 (57.1)

MD+WD 28 (62.2) 12 (42.9)

FIGO stage 0.005

1l 13 (28.9) 0(0.0)

11 32(71.1) 28 (100.0)

PLNM 0.002

No 26 (57.8) 6 (21.4)

Yes 19 (42.2) 22 (78.6)

PALNM 0.003

No 44 (97.8) 20 (71.4)

Yes 1(2.2) 8 (28.6)

Tumor size 4.5 (3.6,5.0) 6.3 (5.1,7.1) <0.001
SUVmax 15.0 (12.2,19.6) 16.9 (15.4,20.5) 0.060

SUVmean 9.5(7.5,12.4) 9.7 (9.1,12.2) 0.279

SUVpeak 11.9 (9.1,14.4) 13.0 (11.7,15.0) 0.038

MTV 15.6 (8.3,24.2) 38.2(30.2,49.8) <0.001
TLG 140.8 (71.1,231.8) 388.0 (305.4,494 4) <0.001
SCCA 6.5(2.0,13.0) 20.6 (5.7,33.3) 0.004

HGB 125.0 (114.5,129.0) 114.0 (107.3,124.0) 0.002

ALB 38.3 (36.4,40.2) 36.6 (34.9,40.2) 0.210

D-dimer 0.26(0.12,0.56) 0.24 (0.11,0.78) 0.617

NLR 2.1(1.5,34) 3.2(24,4.7) 0.006

PLR 137.1 (115.1,204.8) 181.2 (136.1,244.4) 0.023

LMR 4.4 (3.1,6.1) 3.4(2.8,4.6) 0.019

NMR 9.6 (8.1,12.0) 10.0 (8.5,14.0) 0.376

Note: Variables are presented as mean+SD or median (IQR) for continuous data and n (%) for categorical data. Abbreviations:BMI body mass index, PD po-or
differentiation, MD middle differentiation, WD well differentiation, FIGO international federation of gynecology and obstetrics, PLNM pelvic lymph node
metastasis, PALNM para-aortic lymph node metastasis, SUVmax maximal standardized uptake value, SUVmean mean standard uptake value, SUVpeak Pe-
ak standard uptake value, MTV metabolic tumor volume, TLG total lesion glucose,SCCA squamous cell carcinoma antigen, HGB hemoglobin, ALB albumin,
NLR neutrophilto lymphocyte ratio, PLR platelet-to-Lymphocyte Ratio, LMR lymphocyte-to-monocyte ratio, NMR Neutrophil to monocyte ratio
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training set was subjected to Univariate Cox regression ana-
lysis, revealing several factors that were significantly associ-
ated with PFS, including FIGO stage, SUVmean, TLG, HGB,
and Rad-score(P<0.05). These factors were then subjected
to Multivariate Cox regression analysis, revealing that FIGO
stage and Rad-score were the independent predictors of
PFS in LACSC patients(P<0.05) (Table 2), based on which a
combined model was constructed.

The C-index values of the FIGO stage, Rad-score, and com-
bined model were 0.586 (0.545-0.627), 0.692 (0.606-0.778),
and 0.727 (0.647-0.807) in the training set, and 0.612 (0.559-

0.665),0.668 (0.558-0.778),and 0.698 (0.596-0.800) in the va-
lidation set, respectively (Table 3).

The AUCs for FIGO stagein predicting PFSat 12, 18,and 24
months were 0.596,0.592, and 0.615 in the training set, and
0.614, 0.628, and 0.667 in the validation set. For Rad-score,
the AUC were 0.778,0.704, and 0.670 in the training set, and
0.646, 0.723, and 0.691 in the validation set. The combined
model achieved AUC of 0.805, 0.738, and 0.719 in the train-
ing set, and 0.670, 0.744, and 0.741 in the validation set (Fi-
gured).

Table 2. Univariate and multivariate COX regression analysis of the training set.

Characteristic HR (95% CI) Pvalue HR (95% CI) P value
Age (<55vs 255) 0.779 (0.419-1.449) 0.430
BMI (<24 vs 224) 1.041 (0.529-2.048) 0.907
Histological grade (PD vs MD+WD) 1.503 (0.803-2.814) 0.202
FIGO stage (Il vsII) 10.219 (1.402-74.506) 0.022 7.949 (1.083-58.344) 0.042
PLNM (novsyes) 1.285 (0.677-2.437) 0.443
PALNM (novsyes) 1.262 (0.449-3.548) 0.659
Tumor size (<3 vs 23) 1.718 (0.414-7.131) 0.456
SUVmax (<11.8vs 211.8) 1.011 (0.504-2.026) 0.976
SUVmean (<11.8vs 211.8) 1.998 (1.053-3.793) 0.034
SUVpeak (<18.1vs 218.1) 1.295 (0.507-3.311) 0.589
MTV (<10.8vs 210.8) 1.084 (0.515-2.278) 0.832
TLG (<178.7vs 2178.7) 1.984 (1.035-3.800) 0.039
SCCA(<1.5vs21.5) 0.931 (0.390-2.221) 0.872
HGB (<123 vs 2123) 0.400 (0.195-0.818) 0.012
ALB (<40.3vs 240.3) 0.760 (0.336-1.719) 0.509
D--dimer (<0.4 vs 20.4) 1.772 (0.940-3.341) 0.077
NLR (<2.11vs 22.11) 0.978 (0.510-1.875) 0.946
PLR (<250 vs 2250) 1.594 (0.705-3.605) 0.263
LMR (<5.2vs 25.2) 0.753 (0.368-1.540) 0.437
NMR (<11 vs 211) 1.806 (0.951-3.428) 0.071
Rad-score 5.948 (3.388-10.444) <0.001 5.269 (2.961-9.378) <0.001

Note: BMI body mass index, PD poor differentiation, MD middle differentiation, WD well differentiation, FIGO international federation of gynecology and ob-
stetrics, PLNM pelvic lymph node metastasis, PALNM para-aortic lymph node metastasis, SUVmax maximal standardized uptake value, SUVmean mean
standard uptake value, SUVpeak Peak standard uptake value, MTV metabolic tumor volume, TLG total lesion glucose, SCCA squamous cell carcinoma anti-
gen, HGB hemoglobin, ALB albumin, NLR neutrophil to lymphocyte ratio, PLR platelet-to-Lymphocyte Ratio, LMR lymphocyte-to-monocyte ratio, NMR Ne-

utrophilto monocyteratio
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Table 3. Predictive performance ofeach modelfor PFS in patients with LACSC C-index (95% Cl).

Model Training set Validation set
FIGO stage 0.586 (0.545-0.627) 0.612 (0.559-0.665)
Rad-score 0.692 (0.606-0.778) 0.668 (0.558-0.778)

Combined model

0.727 (0.647-0.807)

0.698 (0.596-0.800)
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Figure 4. Prediction performance of the three models. (a), (b) and (c) were the ROC curves for predicting PFS of LACSC patients at 12,18 and 24 months in the training set,
respectively. (d), (e) and (f) were the ROC curves for predicting PFS of LACSC patients at 12,18 and 24 monthsin the validation set, respectively.

Nomogram establishment and evaluation

A visual nomogram was built using the Rad-score and FIGO
stage (Figure 5). The calibration curve showed that the no-
mogram model had a good consistency between the predic-
ted and actual probabilities of disease progression (Supple-
mentary Figure 3, Supplemental digital content 1), and the
decision curve revealed that the nomogram model could of-
fer more net clinical benefit than the FIGO stage (Supple-
mentary Figure 4, Supplemental digital content 1).

Correlation analysis between Rad-score and PET/CT
metabolicparameters

The Rad-scores and PET/CT metabolic parameters of all pa-
tients in the study cohort were analyzed using Spearman
correlation analysis. According to the results, the Rad-score
correlated weakly with SUVmax, SUVmean, and SUVpeak (R=
0.33,0.30,0.41, P<0.001), moderately with MTV (R=0.77, P<
0.001), and strongly with TLG (R=0.81, P<0.001) (Supple-

mentary Figure 5, Supplemental digital content 1).

Discussion

Herein, we developed and validated a pre-CCRT "*F-FDG PET
radiomics-based nomogram model for the tailored predic-
tion of PFS in LACSC patients. We found that the baseline "°F-
FDG PET radiomics-based model could help physicians stra-
tify patient risk and that the integrated model encompassing
the clinical stage not only performed well in predicting the
PFS of LACSC patients but also offered more net clinical be-
nefit.

Radiomics can facilitate the diagnosis, efficacy evaluation,
and prognostic prediction of cervical cancer [15, 24, 25]. Lucia
et al. (2018) [15] found that entropy-GLCMfrom functional
imaging DWI-MRI and gray level nonuniformity (GLNU)-GLRL
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Figure 5.Nomogram model for predicting PFS based on Rad-score and FIGO stage.
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Supplementary Figure 3. (a), (b), and (c) are the nomogram calibration curves of PFS for 12 months, 18 months, and 24 months in the training set, respectively. (d), (e),
and (f) are the nomogram calibration curves of PFS for 12 months, 18 months, and 24 months in the validation set, respectively.

from PET were independent predictors of LACC recurrence
and local regional control, with a significantly higher predic-
tive capability than that of conventional clinical parameters.
Furthermore, Liu et al. (2024) [26] used three CT radiomics
features, one PET radiomics feature and one clinical feature to
construct a clinical radiomics model for predicting the 3-year
PFS of LACC patients post-CCRT, demonstrating good
performance. The AUC values of the training, internal test,
and external validation sets were 0.661, 0.718 and 0.775, res-
pectively, and the C-index values were 0.698,0.724 and 0.705,

respectively, which align with our findings. Herein, we used a
PET radiomics model to predict the PFS of LACSC patients at
12,18, and 24 months, showing good performance, with vali-
dation set AUC values of 0.646, 0.723, and 0.691, respectively.
Notably, the combined model integrating the FIGO stage of-
fered more benefits. Among the currently known LACC-rela-
ted prognostic factors, LNM is a well-documented indepen-
dent predictor. However, we did not find such a correlation;
hence, LNM was not included in our model construction. This
phenomenon could be attributed to several factors. Specifi-
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Supplementary Figure 4. (a), (b) and (c) were the decision curve analysis of 12-month, 18-month and 24-month PFS for nomogram model and FIGO staging system, res-

pectively.
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Supplementary Figure 5. Correlation between Rad-score and PET traditional metabolic parameters SUVmax (a), SUVmean (b), SUVpeak (c), MTV (d), TLG (e). The spe-

arman rank correlation test was used to evaluate the relationship between variables.

cally, *F-FDG PET/CT has moderate sensitivity (72%) and rela-
tively high specificity (96%) in detecting LNM, implying that it
could show poor stability when detecting para-aortic LNM
[27,28]. Second, we only considered the location of LNM and
not the number of LNM. Olthof et al. (2022) [29] reported that
the number of positive lymph nodes could be used to further
stratify patient risk in cervical cancer patients. Finally, this stu-
dy's limited sample size and patient selection bias could also
have beeninfluencing factors.

Previously, Kidd et al. (2007) [30] showed that higher
SUVmax of cervical cancer primary lesions was associated
with poor survival and increased LNM risk. Conversely, we fo-
und that SUVmax is not an independent predictor of PFS in
LACSC patients, potentially because tumor stage and histo-

logical type could affect "F-FDG uptake in cancer tissues.
Furthermore, SUVmax is just a single voxel value that does
not reflect the entire tumor's metabolism. Markus et al.
(2023) [9] found that only MTV and TLG among the PET/CT
metabolic parameters before treatment correlated with re-
currence and overall survival in cervical cancer. Moreover,
Herrera et al. (2016) [10] and Wang et al. (2021) [31] reported
that primary lesion's TLG could be an independent prognos-
tic marker for PFS and distant metastasis-free survival in cer-
vical cancer. Herein, our univariate analysis revealed that
both SUVmean and TLG correlated with PFS, although they
were not independent predictors in multivariate analysis.
Furthermore, the correlation analysis between PET/CT meta-
bolic parameters and Rad-scores showed that SUVmean and
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TLG correlated weakly and strongly with Rad-score, res-
pectively. Therefore, our study revealed that compared with
traditional metabolic parameters, radiomics features extrac-
ted from PET images were more representative and could
betteridentify tumor heterogeneity.

Herein, the PET radiomics model comprised one first-or-
derfeature and four texture features. Amongthem, square_
glszm _GrayLevelNonUniformity has the largest weight in
our model, indicating that the GLNU from PET images was
an important prognostic factor for PFS in cervical cancer pa-
tients, which is consistent with previous research [5, 15, 26].
Ourresultsindicate that the uniformity of gray level distribu-
tionin PET images correlates closely with the invasiveness of
LACSC. Invasive tumor lesions often show uneven gray level
distribution on PET images, reflecting significant variations
in tumor regions and highlighting blurred, irregular edges.
Areas of high metabolic activity absorb more tracers, cre-
ating hot spots that intensify with increasing tumor invasi-
veness. Furthermore, due to the rapid growth and infiltra-
tion of highly invasive tumors, there is often no clear boun-
dary between the tumor edge and surrounding normal tis-
sue, manifested as a gradual gray value transition on PET
images, rather than a distinct boundary [32, 33]. Highly inva-
sive tumors often induce vascularization to meet their rapid-
ly growing metabolic needs. These new blood vessels may
appearasadditional hot spotson PET images, furtheraggra-
vating the uneven distribution of gray levels.

The occurrence and development of tumors often involve
changes in the body's immune status, increased inflamma-
tory response, and abnormal activation of the coagulation
system [34, 35]. Research has shown that blood metabolites
orinflammatory biomarkers are vital predictors of prognosis
in cervical cancer patients [36, 37]. However, in this study, in-
flammatory biomarkers are not independent factors affec-
ting the prognosis of cervical cancer, which may be related
to their non-specificity. Some scholars believe that anemia
may lead to tumor hypoxia, thereby promoting tumor radio-
resistance [38]. Chen et al. (2015) [39] found that a low HGB
level before treatment correlated with poor local control in
LACC patients. Additionally, Liu et al. (2022) [40] found that
low HGB levels before CCRT were an independent risk factor
for PFS in LACC patients. Herein, our univariate analysis re-
sults showed that the HGB level before treatment correlated
with the PFS of LACSC patients, although it was not an inde-
pendent prognostic factor for LACSC in multivariate ana-
lysis. This phenomenon could be attributed to the fact that
the inclusion of Rad-score somewhat impacted the outco-
me. Nonetheless, a previous study revealed that anemia was
not an independent predictor of cervical cancer recurrence
post-CCRT, whereas anemia during radiotherapy was asso-
ciated with disease-specificsurvival [41].

This study had some notable limitations. First, it was a
small-sample, single-institution, retrospective study. Se-
cond, we only analyzed the short-term prognosis. Finally,
the tumor ROl was manually delineated in this study. Altho-
ugh the intra-group consistency test revealed that the ex-
tracted radiomics features were highly robust, the process
was time-consuming and labor-intensive. Therefore, it is ne-
cessary to carry out multi-center, long-term prognosis rese-
arch and explore automatic segmentation technologyin the

future toimprove the prognosis of patients.

In conclusion, the "*F-FDG PET-based Rad-score can more
accurately predict the PFS of LACSC CCRT patients, helping
clinicians to further stratify patient risk. Meanwhile, the
combined nomogram model encompassing the FIGO stage
could facilitate a more accurate and personalized asses-
sment of the prognosis of LACSC patients, thus improving
clinical benefits.
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