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Abstract

Objective: Prognosis evaluation in cervical cancer is crucial for treatment decisions. This study aims to deve-
lop and validate a combined model using positron emission tomography (PET)-derived intratumoral and
peritumoral radiomic parameters to predict cervical cancer prognosis based on the Shapley additive expla-
nations (SHAP) method. Subjects and Methods: A retrospective cohort of 114 patients with cervical cancer
from two institutions was used, with one institution's data designated for training and the other for testing.
Semi-automatic segmentation of fluorine-18-fluorodeoxyglucose (“F-FDG) PET images was performed to
delineate the primary intratumoral and peritumoral regions, defined by expanding the tumor boundary by
2mm, 4mm, 6mm, and 8mm. Radiomic features were extracted from each region. Six machine learning algo-
rithms were employed to construct intratumoral and peritumoral radiomic models, with the optimal model
selected based on performance evaluated through receiver operating characteristic (ROC) and calibration
curves. Area under the curve (AUC) values were compared using the DeLong test. The SHAP method was
used to identify the key features influencing prognosis. Results: Among the intratumoral and peritumoral ra-
diomic models, the Gradient Boosting Machine (GBM) algorithm showed superior performance. The 4mm
peritumoral model exhibited the best performance among the four peritumoral models, with a testing AUC
of 0.762 (95% Cl: 0.582-0.944). The integrated model combining the intratumoral and 4mm peritumoral re-
gions emerged as the optimal radiomic model for predicting cervical cancer prognosis, achieving the hig-
hest AUC of 0.954 (95% Cl: 0.882-1.000) in the testing set. At the patient level, SHAP force plots provided valu-
able insights into the combined model's predictive ability for prognosis. Conclusion: The integrated radi-
omic model, particularly for the 4mm peritumoral region, was validated as the optimal approach for predic-
ting overall survival in cervical cancer. The application of the SHAP method enhanced interpretability, allow-
ing for the identification of key features influencing prognosis and offering transparent insights for guiding
personalized treatment strategies.
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Introduction

ervical cancer ranks as the fourth most common malignancy among women, with

an estimated 0.66 million new cases and 0.35 million deaths worldwide in 2022 [1].

The prognosis of cervical cancer is influenced by several factors, including lymph
node status, the International Federation of Gynecology and Obstetrics (FIGO) staging,
histological type, and tumor size [2]. According to international guidelines [3], surgery is
the preferred treatment for patients with FIGO stage IA to IIA cervical cancer, while cispla-
tin-based chemotherapy combined with radiation therapy is the treatment of choice for
those with locally advanced disease. Despite these interventions, approximately one-third
of patients experience recurrence within two years of chemoradiotherapy, resulting in a 5-
yearoverall survival rate of approximately 70% [4]. These challenges highlight the pressing
need for a reliable, non-invasive method to preoperatively predict the prognosis of pati-
ents with cervical cancer, facilitating personalized treatment strategies, improving patient
outcomes, and reducing recurrence.

In recent years, radiomics has emerged as a powerful research tool that not only extracts
features such as tumor morphology, texture, and density but also uncovers changesin the
tumor microenvironment. Specifically, features derived from both the tumor's internal
and external regions through fluorine-18-flucrodeoxyglucose (°F-FDG) positron emis-
sion tomography (PET) imaging offer deeper insights into tumor biology [5-8]. However,
most existing radiomics studies primarily focus on tumor features alone, often overlo-
oking the prognostic potential of the surrounding tumor microenvironment [9-11]. Fur-
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thermore, despite the remarkable predictive capabilities of
machine learning algorithms in medical image analysis,
their “black box” nature complicates model interpretability,
limiting clinical applicability [12]. Thus, integrating radiomic
features from both the tumor and surrounding regions to
develop a comprehensive prognostic model can provide a
more holistic evaluation of patient prognosis, laying the fo-
undation for personalized treatment.

This study aims to develop a comprehensive predictive
model using PET-derived radiomic features from both the
tumor's internal and surrounding regions to predict the prog-
nosis of patients with cervical cancer. Radiomic features were
extracted from the tumor's internal region and from surroun-
ding areas at distances of 2mm, 4mm, 6mm, and 8mm. Four
machine learning algorithms-random forest (RF), support vec-
tor machine (SVM), gradient boosting machine (GBM), and
multilayer perceptron (MLP)-were utilized to construct the
predictive models. The optimal machine learning algorithm
and the most effective tumor-surrounding model were then
selected to create an integrated radiomics model. The Shapley
additive explanations (SHAP) method was applied to analyze
feature importance, thereby enhancing the model's interpre-
tability.

Subjectsand Methods

Study population

This retrospective study analyzed data from 357 patients
with cervical cancer diagnosed according to World Health
Organization (WHO) criteria. All participants underwent “F-
FDG PET/computed tomography (CT) imaging within two
weeks before treatment initiation. Data were sourced from
two hospitals, with inclusion and exclusion criteria detailed
in Figure 1. A total of 83 cases from Nanjing Drum Tower Hos-
pital and 31 cases from Jiangsu Provincial People's Hospital
were included in the training and testing cohorts. Ethical ap-
proval was granted by the institution's ethics committee, and
written informed consent was waived in accordance with re-

levant regulations (approval number: 2023-266-02). All pro-
cedures involving human participants adhered to the prin-
ciples outlined in the 1964 Declaration of Helsinki and its
subsequentamendments.

"*F-FDG PET/CT image acquisition

Two scanners (Veros and GEMINI GX, Philips, Amsterdam,
Netherlands) were used in this study, with both institutions
employing these two devices. Prior to imaging, all patients
fasted for at least 6 hours and had blood glucose levels main-
tained below 11.1mmol/L. Each patient received an intrave-
nous injection of 3.7MBgq/kg (0.1mCi/kg) of “F-FDG. After the
injection, patients rested in a dimly lit, quiet environ-ment for
approximately 60 minutes before the scan and were instruc-
ted to empty their bladders. The CT parameters at both insti-
tutions were a tube voltage of 120kV, tube current of 120maA,
and slice thickness of 2.0mm. Positron emission tomography
scans were performed in 3D mode, from the skull vertex to
the proximal thigh. Each scan took 2 minutes per bed posi-
tion, with CT data used for attenuation correction. Image re-
construction utilized the ordered subset expectation maxi-
mization (OSEM) method with 3 iterations and 10 subsets on
the Veros device, while the GEMINI GX used LOR (Line of Res-
ponse) reconstruction.

Follow-up

All enrolled patients were followed up at 3- to 6-monthinter-
vals after treatment initiation, with the endpoint defined as
overall survival (OS). The median OS for patients with cervi-
cal cancer from the two institutions was 24 months. Based
on this, patients were categorized into short OS and long OS
groups.

Datastandardization and VOI delineation

The workflow of radiomics in this study is illustrated in Figu-
re 2.Two nuclear medicine physicians with five years of PET/
CT diagnostic experience, blinded to the patients' survival
times, delineated the volumes of interest (VOI) in PET ima-
ges using LIFEx software (version 7.4, http://www.lifexsoft.
org; Orsay, France). The VOI included both the tumor and
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peritumoral regions. To minimize discrepancies between
images, the scanned images were resampled to a voxel size
of TmmxTmmxTmm. Additionally, PET images were then
standardized to ensure consistent image analysis and reli-
able results. The standardization process involved batch-ad-
justing the contrast of all images to a uniform level using
software, applying consistent settings across the entire da-
taset. The general intratumoral region, extending beyond
the tumor itself, was manually delineated layer by layer. Sub-
sequently, the intratumoral boundary was automatically de-
fined using a standardized uptake value (SUV) threshold of
2.5. Following this, 2mm, 4mm, 6mm, and 8mm annular re-
gions were automatically generated around the tumor bo-
undary to delineate the peritumoral areas. Any adjacent non-
tumor tissues, such as the bladder, kidneys, or surrounding
normal bowel, were manually excluded from these annular
regions.
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Figure 2. Flow chart of radiomics analysis.
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B. Features Extraction
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Radiomicsfeature extraction and selection

Radiomic feature extraction was performed using the Pyradi-
omics modulein Python 3.7.0, which extracted a total of 2016
PET-based radiomic features for each VOI. Detailed informa-
tion about the extracted features is provided in Figure S1. Fe-
ature standardization was then performed using the Z-score
method. To mitigate discrepancies arising from the use of dif-
ferent imaging devices, Combat harmonization was applied
asa preprocessing step to address scanner variability.

During the radiomics feature selection process, features
with a Pearson correlation coefficient exceeding 0.90 were
considered highly correlated, and only the feature with hig-
her area under the ROC curve AUC value was retained. After
applying Least Absolute Shrinkage and Selection Operator
(LASSO) regression, features with non-zero coefficients we-
re selected for furtheranalysis.
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Optimal machinelearningalgorithmselection

After radiomic feature selection, a total of 20 intratumoral
and peritumoral radiomic models were constructed based on
various combinations of four ensemble learning algorithms:
RF, SVM, GBM, and MLP, applied across five tumor modalities
(intratumoral, peritumoral 2mm, 4mm, 6mm, and 8mm). The
optimal machine learning algorithm was selected from these
models based on performance.

Optimal peritumoral model and combined model con-
struction

The AUC of the optimal machine learning algorithms for the
four peritumoral models were compared, and the best-per-
forming peritumoral model was chosen. Finally, a combined
model was developed by integrating the intratumoral mo-
del with the optimal peritumoral model.

Model explanation and visualization

Shapley additive explanations, a method grounded in ga-
me theory, is utilized to explain machine learning model
predictions by calculating Shapley values [13]. A key advan-
tage of SHAP is its ability to quantify the contribution of
each feature to the model's prediction, ensuring consisten-
cyintheinterpretation of results.

Shapley additive explanations values were used to eva-
luate the overall importance of features within the combined
model, which demonstrated the strongest predictive perfor-
mance. The SHAP summary plot visually represents the influ-
ence of each feature on the model's predictions, with each
point corresponding to the SHAP value of a specific feature
for an individual patient. In contrast, the SHAP force plot of-
fers insights into the individual contributions of features to a
single prediction, highlighting how variations in feature va-
lues affect the model's output. This visualization uses arrows
or color coding to indicate both the direction and magnitude
of positive or negative contributions, providing a transparent
and intuitive explanation of the model's decision-making
process.

Statisticalanalysis

Quantitative variables are presented as meanzstandard
deviation (SD), and comparisons between two independent
groups were conducted using the independent-samples t-
test. Categorical variables are expressed as frequencies and
percentages, with comparisons made using the chi-square
test or Fisher's exact test. The performance of the radiomics
model was assessed using various metrics, including AUC,
sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV). Additionally, performance
was evaluated through ROC curves, calibration curves, and
decision curve analysis (DCA). Differences in AUC values
between models were analyzed using the DelLong test. All
statistical analyses were performed in Python (Anaconda3s.
exe), with statistical significance set at a two-sided P-value
<0.05

Results

Patient characteristics

As shown in Table 1, no significant differences were obser-
ved in the clinical characteristics between the training and
testing cohorts. Based on a median OS of 24 months, the ca-
ses were divided into two groups: Short OS and long OS. To
identify potential clinical prognostic factors for cervical can-
cer, univariate logistic regression analysis was conducted. As
presented in Table 2, no clinical prognostic factors were fo-
undto beindependentindicators of prognosis.

Optimal machine learning algorithm based on intra-
tumoral and peritumoral radiomics in the testing co-
hort

Following radiomic feature selection, atotal of 5,2,5,11,and
11 informative features were identified for constructing the
intratumoral model (Figure S2a), peri-2mm model (Figure
S2b), peri-4mm model (Figure S2c¢), peri-6mm model (Figure
S2d), and peri-8mm model (Figure S2e), respectively. Subse-
quently, 20 machine learning models were developed by in-
tegrating these five radiomic models with four distinct mac-
hine learning algorithms: RF, SVM, GBM, and MLP. Among
the classifiers, GBM demonstrated superior performance in
prognosis prediction compared to the other three algori-
thms. Specifically, GBM achieved AUC values of 0.677,0.750,
0.762,0.719,and 0.675 for the intratumoral, peri-2mm,4mm,
6mm, and 8mm models, respectively, in the testing cohort
(Figures 3a-3f). Based on these results, GBM was selected as
the optimal machinelearningalgorithmfor furtheranalysis.

Optimal peritumoral model selection and combined
model construction
The diagnostic performance of the radiomics models using
the GBM algorithm was evaluated across four different peri-
tumoral region sizes in the testing cohort. The corresponding
AUC values were 0.750, 0.762, 0.719, and 0.675, respectively.
Among these models, the one incorporating a 4mm peritu-
moral region demonstrated superior diagnostic performance,
with an optimal balance of stability and accuracy (Figure 4a).
To further enhance model performance, a combined radi-
omics model was developed, integrating six features that
encompassed both intratumoral characteristics and those
from the 4mm peritumoral region (Figure S2f). This combi-
ned model was compared against the individual intratumo-
ral and peritumoral models. The results showed that the
combined model exhibited the highest performance in the
test set, achieving an AUC of 0.954, sensitivity of 0.867, spe-
cificity of 1.000, and accuracy of 0.935. The corresponding
ROC curve for this optimal combined model is shown in Fi-
gure 4a. Additionally, the results of the DeLong test, which
statistically compared performance differences between
models, are presented in Figure 4b. The calibration curve
and clinical decision analysis curve further validate the mo-
del's reliability and practical utility, as shown in Figures 4c
and 4d, respectively. Finally, a comprehensive summary of
the overall performance metrics for all constructed intratu-
moral, peritumoral, and combined models is provided in
Table 3.

Visualization of combined model
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Table 1. Demographicinformation and clinical characteristics of patients in the training and validation cohorts.

Characteristics All Training cohort Test cohort P value
Age# 55.55+12.79 55.55+12.72 55.55+13.18 0.998
Pathological type 0.523
squamous Cell Carcinoma 102 (89.47) 74 (89.16) 28 (90.32)
adenocarcinoma 9 (7.89) 6 (7.23) 3(9.68)
others 3(2.63) 3(3.61) -
FIGO stage 0.469
| 15 (13.16) 12 (14.46) 3(9.68)
Il 30 (26.32) 23 (27.71) 7 (22.58)
1} 49 (42.98) 32 (38.55) 17 (54.84)
v 20 (17.54) 16 (19.28) 4 (12.90)
Tumor marker 0.819
normal 55 (48.25) 39 (46.99) 16 (51.61)
elevated 59 (51.75) 44 (53.01) 15 (48.39)
Treatment 0.642
signal 35 (30.70) 27 (32.53) 8 (25.81)
combined 79 (69.30) 56 (67.47) 23 (74.19)
#At-testwas usedforage, ay’ testor Fisher's exact test was used for the rest
Table 2. Univariate analysis in cervical cancer patients.
OR OR lower 95%ClI OR upper 95%ClI P value
Age 0.998 0.992 1.005 0.634
Pathological type 0.164 0.032 0.828 0.066
FIGO stage 0.952 0.836 1.083 0.53
Tumor marker 1 0.609 1.642 1
Treatment 1 0.644 1.553 1

OR: odds ratio; Cl: confidence interval

Figure 5 presents the SHAP summary plot, where each point
represents the impact of a feature value on the model's pre-
diction. Features with greater influence are ranked higher
on the vertical axis, while the horizontal axis shows that po-
sitive values correlate with better prognosis, and negative
values reflect poorer outcomes. Red points indicate larger
feature values, while blue points correspond to smaller
ones. The plot highlights that the peritumoral feature "squ-
areroot_firstorder_Minimum" is the most significant factor
in predicting cervical cancer prognosis. The distribution of
this feature across the dataset reveals variability in SHAP va-

lues among patients. Notably, the color gradient indicates
that an increase in the value of "Peri_squareroot_firstorder
_minimum" positively contributes to the model's output,
enhancing the predicted prognosis.

The SHAP force plots (Figure 6) provide a more granular
explanation of individual patient predictions. These plots vi-
sually depict the SHAP values of features as forces that eit-
herincrease or decrease the evaluation. Each prediction be-
gins from the baseline value of 0.49, representing the ave-
rage SHAP value across all predictions. The arrow lengths
correspond to the magnitude of each feature's contribution
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Intratumoral model

Add Figure S2legend.
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Figure 3. The ROC curves of the different models for four different algorithms in the test cohort. As indicated, Gradient Boosting was identified to be the optimal classifier
with the highest AUC of 0.677, 0.750, 0.762, 0.719, and 0.675 for intratumoral (intra), peritumoral 2mm (peri2mm), peritumoral 4mm (peri4mm), peritumoral 6mm

(periomm) and peritumoral 8mm (peri8mm) models, respectively.

tothe SHAP value, expressed as a percentage. Asillustrated in
Figure 6A, a specific patient had a SHAP value of 0.68, sur-
passing the baseline value of 0.49, indicating classification
into the long OS group. Among the contributing features, the
red arrow for "squareroot_firstorder_Minimum" with a value
of 1.141 played a pivotal role in predicting a favorable prog-

nosis. In contrast, Figure 6B shows another patient with a
SHAP value of 0.27, below the baseline value of 0.49, sugges-
ting classification into the short OS group. The blue arrow for
"squareroot_firstorder_Minimum" with a value of -1.215
reflects its negative influence on prognosis prediction, contri-
buting to the unfavorable outcome.
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Figure 4. The performance of the intratumoral radiomic models, peritumoral radiomic models and the integrated intratumoral and peritumoral radiomic models. A) Based
on PET radiomics combined with Gradient Boosting, six models were constructed: one intratumoral model (Intra), four peritumoral models (Peri2-8mm), and one intra-tu-
moral + peritumoral 4mm (Intra_peri4 mm) combined model. As shown in the figure, the Intra_peri4mm combined model achieved the highest average AUC of 0.954
(95% C1: 0.82—1.000) in the test cohort, proving to be the optimal model for predicting the prognosis of cervical cancer. B) The differences in prediction performance among
the six constructed models are shown. C) As indicated in the calibration curves, the combined model (Intra_peri4mm) exhibited a superiority on the alignment of predicted
probability and actual probability. D) The DCA curvesalso confirmed the outperformance of the combined model over the other modelsin the net benefit.

Table 3. Each evaluation metric of the intratumoral and peritumoral models in the Gradient Boosting machine learning algorithm for the test co-

hort.

Model Name AUC (95%CIl) Accuracy Sensitivity Specificity PPV NPV Recall F1
Intratumoral 0.677 (0.471 -

Intratt 0885, 0.710 0.933 0.500 0636 0889 0933  0.757
Peri2mm model 0'75(?9(2'95)72 T 0.742 0.933 0.562 0667 0900 0933 0778
Peri4mm model 0'7%2535)82 © 0.806 0.933 0.687 0737 0917 0933 0824
Peri6mm model 0'710958'25;35 T 0677 0.733 0.625 0647 0714 0733  0.687
Peri8mm model 0'6705§$4“)76 T 0677 0.867 0.500 0619 0800 0867  0.722
Combined model 0'95140(868)82 T 0935 0.867 1.000 1000 0889 0867 0929

AUC: area under the curve; Cl: confidence interval; PPV: positive predictive value; NPV: negative predictive value; Peri2mm, peritumoral
2mm model; Peri4mm, peritumoral 4mm model; Peri6mm, peritumoral 6mm model; Peri8mm, peritumoral 8mm model.

Discussion

This study highlights the potential of integrating intratumo-
ral and peritumoral radiomic features derived from *F-FDG
PET images to predict cervical cancer prognosis. The fin-
dings emphasize the pivotal role of peritumoral imaging fe-
atures, especially those from the 4 mm surrounding regions,
in prognosis prediction. When combined with intratumoral

features to construct a comprehensive predictive model,
these features significantly enhance prediction accuracy.
Furthermore, the application of SHAP values provides valu-
able insights into how individual and collective features
contribute to prognosis prediction, thereby improving both
modelinterpretability and clinical utility.

The peritumoral region, where tumour cells interact with
adjacent normal tissue cells, represents the external tumor
microenvironment [14]. Tumor invasion into surrounding
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Figure 5. Shapley additive explanations summary plots of combined radiomic model (intratumoral + peritumoral 4mm model). The plot illustrated the feature relevance

attributions to the model's predictive performance.
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Figure 6. Shapley additive explanations force plots explained impact process of each significant features on the final predicted probability. The colour represents the contri-
butions of each feature, with red being positive and blue being negative. The length of the colour bar represents the contribution strength. The 0S of patient A was 76 months
(long 0S group), and the OS of patient B was 16 months (short 0S group). For instance, high feature value of Peri_squareroot_firstorder_Minimum contributed to the incre-
ase in the assessment probability of the long OS group. Patient B had a Peri_squareroot_firstorder_Minimum value of -1.215, while a higher Peri_squarero-
ot_firstorder_Minimum value of patient A (1.141) contributed to assessing the long 0S group.

normal tissue can cause morphological and textural chan-
ges in the peritumoral area [15]. Radiomic features effecti-
vely capture subtle structural alterations within both tumor
and peritumoral tissues, reflecting changes in the tumor
microenvironment [16, 17]. Given the close association bet-
ween the tumor microenvironment and tumor aggressive-
ness as well as treatment response, it significantly influences
disease prognosis [18-21]. However, research on peritumoral
radiomics in cervical cancer remains limited. Li et al. (2021)
[7] explored PET/CT-based radiomics in early-stage cervical
cancer, focusing onintratumoral and 2-3 mm peritumoral re-
gions, and found that their model effectively predicted E-
cadherin expression, significantly correlating with pelvic
lymph node metastasis. In a study of 247 patients with early-
stage cervical cancer, Zhang et al. (2023) [22] developed a ra-
diomics model incorporating T2WI, DWI, and 3mm peritu-
moral regions, achieving an AUC of 0.846 for predicting lym-

ph node metastasis. Takada et al. (2020) [23], analyzing data
from 87 patients with cervical cancer, showed that features
from expanded tumor regions in T2-weighted imaging
(T2WI) and apparent diffusion coefficient (ADC) maps accu-
rately predicted recurrence after radiotherapy, with AUC-
ROC values of 0.82,0.82, and 0.86 for different expanded pe-
ritumoral regions: 4mm in T2WI and 4mm and 8mm in ADC.
Despite these advancements, controversy remains regar-
ding the optimal tumor region size. This study constructed
radiomics models for the peritumoral area using different
thicknesses (2mm, 4mm, 6mm, and 8mm), the results show
that the tumor surrounding model with a 4mm surrounding
region yielded the highest predictive performance. How-
ever, as the surrounding tumor region expanded, no impro-
vement in prediction performance was observed. This fin-
ding aligns with recent studies [24, 25], which suggest that
the closer the surrounding tumor region is to the tumor inte-
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rior, the richer the tumor heterogeneity information it con-
tains. On the other hand, overly expanding the surrounding
tumor region may introduce additional noise, leading to a
decline in the model's predictive performance. In addition
to analyzing intratumoral and peritumoral radiomics inde-
pendently, a combined model integrating both intratumo-
ral and peritumoral features were developed. The results re-
vealed that the predictive performance of models based so-
lely on intratumoral or peritumoral radiomics (2-8mm) was
slightly lower. However, the combined model, incorporating
both intratumoral and 4mm peritumoral features, signifi-
cantly improved predictive accuracy. This suggests that
both the internal tumor region and the 4mm peritumoral
microenvironment provide valuable and complementary
prognosticinformation.

To improve the interpretability and transparency of mac-
hine learning models, SHAP values were applied to a combi-
ned model utilizing the GBM algorithm, enhancingits expla-
inability and evaluating the impact of key features. The use
of SHAP values in cervical cancer has been explored in areas
such as diagnosis [26], microbial pathogenesis [27], predic-
tion of radiation-induced rectal inflammation post-radio-
therapy [28, 29], PD-L1 and PD-1 expression prediction[30],
and prognosis prediction [31]. Shapley additive explana-
tions values assess the contribution of each feature to the
model's output, and SHAP decision plots further visualize
the decision-making process of the GBM algorithm. In this
study, key features identified for predicting cervical cancer
prognosis included the intratumoral feature lbp_3D_m1_
firstorder_Kurtosis, the peritumoral feature squarero-
ot_firstorder_Minimum, and wavelet.HHH_glcm_Correla-
tion.The high value of lbp_3D_m1_firstorder_Kurtosis likely
correspondsto regions of irregular cell growth within the tu-
mor, represented as abnormal high- and low-density areas
in imaging, suggesting increased tumor heterogeneity. Tu-
mor heterogeneity typically reflects irregular cell growth,
which is associated with tumor aggressiveness and malig-
nancy, making it a critical prognostic factor [32]. Meanwhile,
the peritumoral feature squareroot_firstorder_Minimum fo-
cuses on changes in the tumor's surrounding microenviron-
ment. This minimum value captures alterationsin the vascu-
lature and interstitial spaces of tissue surrounding the tu-
mor, which are essential factors influencing tumor spread
and patient survival [33]. Additionally, wavelet transform
analyzes image signals at various frequency scales, effecti-
vely capturing subtle but crucial texture information that
may be overlooked by visual inspection. Previous studies
have also shown that wavelet features possess strong pre-
dictive capabilities and play a crucial role in the construction
of radiomics models[34, 35].This study further confirms the-
se findings. The intratumoral feature wavelet HHH_glcm_
Correlation is significantly associated with cervical cancer
prognosis, suggesting that these features are robust pre-
dictors of outcomes.

This study demonstrates that the GBM algorithm, whe-
ther applied to intratumoral or peritumoral radiomic featu-
res, serves as the optimal classifier for predicting cervical
cancer prognosis, showcasing its robustness. GBM excels in
capturing complex nonlinear relationships and feature in-
teractions within data [36, 37]. Ji et al. (2022) [38] succes-

sfully used the GBM algorithm to predict cancer-specific sur-
vival (CSS) in 1050 patients with intrahepatic cholangiocar-
cinoma using common clinical parameters, achieving a C-
statistic >0.72 and outperforming traditional prognostic
scoring or staging systems. Similarly, Zhao et al. (2022) [39]
predicted physical therapy outcomes in 142 patients with
lumbar disc herniation, with the GBM algorithmyielding the
best predictive performance (AUC=0.936), outperforming
the RF model (AUC=0.883). These studies suggest that the
GBM algorithm is a powerful tool for both large and small
sample datasets. The strong performance of the GBM algori-
thm in this study can be attributed to several factors. First,
the iterative boosting of multiple weak learners (typically
decision trees) gives GBM a high fitting ability, enabling it to
handle complex nonlinear relationships and providing high
predictive accuracy. Second, the study included a large
number of features, particularly in the combined model with
4,032 features. As a tree-based algorithm, GBM is well-suited
to handle vast feature sets and automatically select the most
important ones, effectively managing high-dimensional
data.

This study has several limitations. First, the sample size is
relatively small, and future research could improve the ge-
neralizability of the model by incorporating a larger and mo-
re diverse patient population. Second, as this study was ret-
rospective, certain biases may have been introduced, parti-
cularly concerning image acquisition and patient selection.
Therefore, future studies should adopt standardized ima-
ging protocols within prospective designs to further refine
and validate the model. Third, this study used two different
PET scanner models with consistent scanning parameters.
However, the differences in reconstruction methods (OSEM
and LOR) were not fully addressed as a potential limitation.
These methods can impact SUV distribution and peritumo-
ral texture features, potentially leading to variations in re-
sults. Future studies should consider standardizing recon-
struction algorithms or further assess their impact on ima-
ging features to reduce errors and biases. Additionally, inte-
grating additional imaging modalities, such as MRI or CT,
with radiomic data from PET images could provide comple-
mentary analysis to optimize model performance.

In conclusion, the radiomics of the 4-mm peritumoral re-
gion plays a pivotal role in predicting survival outcomes in
cervical cancer. Furthermore, the combined radiomics mo-
del, which integrates both peritumoral and intratumoral fe-
atures, has been identified as the optimal model. By integra-
ting the GBM algorithm with SHAP value-based interpreta-
bility analysis, this study provides a robust and clinically me-
aningful framework for personalized prognosis prediction.
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