
18F-FDG PET based intratumoral and peritumoral explainable 

radiomics for predicting cervical cancer prognosis: A multi-

center retrospective study

Abstract
Objective: Prognosis evaluation in cervical cancer is crucial for treatment decisions. This study aims to deve-
lop and validate a combined model using positron emission tomography (PET)-derived intratumoral and 
peritumoral radiomic parameters to predict cervical cancer prognosis based on the Shapley additive expla-
nations (SHAP) method. Subjects and Methods: A retrospective cohort of 114 patients with cervical cancer 
from two institutions was used, with one institution's data designated for training and the other for testing. 

18Semi-automatic segmentation of �uorine-18-�uorodeoxyglucose ( F-FDG) PET images was performed to 
delineate the primary intratumoral and peritumoral regions, de�ned by expanding the tumor boundary by 
2mm, 4mm, 6mm, and 8mm. Radiomic features were extracted from each region. Six machine learning algo-
rithms were employed to construct intratumoral and peritumoral radiomic models, with the optimal model 
selected based on performance evaluated through receiver operating characteristic (ROC) and calibration 
curves. Area under the curve (AUC) values were compared using the DeLong test. The SHAP method was 
used to identify the key features in�uencing prognosis. Results: Among the intratumoral and peritumoral ra-
diomic models, the Gradient Boosting Machine (GBM) algorithm showed superior performance. The 4mm 
peritumoral model exhibited the best performance among the four peritumoral models, with a testing AUC 
of 0.762 (95% CI: 0.582-0.944). The integrated model combining the intratumoral and 4mm peritumoral re-
gions emerged as the optimal radiomic model for predicting cervical cancer prognosis, achieving the hig-
hest AUC of 0.954 (95% CI: 0.882-1.000) in the testing set. At the patient level, SHAP force plots provided valu-
able insights into the combined model's predictive ability for prognosis. Conclusion: The integrated radi-
omic model, particularly for the 4mm peritumoral region, was validated as the optimal approach for predic-
ting overall survival in cervical cancer. The application of the SHAP method enhanced interpretability, allow-
ing for the identi�cation of key features in�uencing prognosis and o�ering transparent insights for guiding 
personalized treatment strategies.
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Introduction

Cervical cancer ranks as the fourth most common malignancy among women, with 
an estimated 0.66 million new cases and 0.35 million deaths worldwide in 2022 [1]. 
The prognosis of cervical cancer is in�uenced by several factors, including lymph 

node status, the International Federation of Gynecology and Obstetrics (FIGO) staging, 
histological type, and tumor size [2]. According to international guidelines [3], surgery is 
the preferred treatment for patients with FIGO stage IA to IIA cervical cancer, while cispla-
tin-based chemotherapy combined with radiation therapy is the treatment of choice for 
those with locally advanced disease. Despite these interventions, approximately one-third 
of patients experience recurrence within two years of chemoradiotherapy, resulting in a 5-
year overall survival rate of approximately 70% [4]. These challenges highlight the pressing 
need for a reliable, non-invasive method to preoperatively predict the prognosis of pati-
ents with cervical cancer, facilitating personalized treatment strategies, improving patient 
outcomes, and reducing recurrence.

In recent years, radiomics has emerged as a powerful research tool that not only extracts 
features such as tumor morphology, texture, and density but also uncovers changes in the 
tumor microenvironment. Speci�cally, features derived from both the tumor's internal 

18and external regions through �uorine-18-�uorodeoxyglucose ( F-FDG) positron emis-
sion tomography (PET) imaging o�er deeper insights into tumor biology [5-8]. However, 
most existing radiomics studies primarily focus on tumor features alone, often overlo-
oking the prognostic potential of the surrounding tumor microenvironment [9-11]. Fur-
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thermore, despite the remarkable predictive capabilities of 
machine learning algorithms in medical image analysis, 
their �black box� nature complicates model interpretability, 
limiting clinical applicability [12]. Thus, integrating radiomic 
features from both the tumor and surrounding regions to 
develop a comprehensive prognostic model can provide a 
more holistic evaluation of patient prognosis, laying the fo-
undation for personalized treatment.

This study aims to develop a comprehensive predictive 
model using PET-derived radiomic features from both the 
tumor's internal and surrounding regions to predict the prog-
nosis of patients with cervical cancer. Radiomic features were 
extracted from the tumor's internal region and from surroun-
ding areas at distances of 2mm, 4mm, 6mm, and 8mm. Four 
machine learning algorithms-random forest (RF), support vec-
tor machine (SVM), gradient boosting machine (GBM), and 
multilayer perceptron (MLP)-were utilized to construct the 
predictive models. The optimal machine learning algorithm 
and the most e�ective tumor-surrounding model were then 
selected to create an integrated radiomics model. The Shapley 
additive explanations (SHAP) method was applied to analyze 
feature importance, thereby enhancing the model's interpre-
tability.

Subjects and Methods

Study population
This retrospective study analyzed data from 357 patients 
with cervical cancer diagnosed according to World Health 

18Organization (WHO) criteria. All participants underwent F-
FDG PET/computed tomography (CT) imaging within two 
weeks before treatment initiation. Data were sourced from 
two hospitals, with inclusion and exclusion criteria detailed 
in Figure 1. A total of 83 cases from Nanjing Drum Tower Hos-
pital and 31 cases from Jiangsu Provincial People's Hospital 
were included in the training and testing cohorts. Ethical ap-
proval was granted by the institution's ethics committee, and 
written informed consent was waived in accordance with re-

levant regulations (approval number: 2023-266-02). All pro-
cedures involving human participants adhered to the prin-
ciples outlined in the 1964 Declaration of Helsinki and its 
subsequent amendments.

18F-FDG PET/CT image acquisition
Two scanners (Veros and GEMINI GX, Philips, Amsterdam, 
Netherlands) were used in this study, with both institutions 
employing these two devices. Prior to imaging, all patients 
fasted for at least 6 hours and had blood glucose levels main-
tained below 11.1mmol/L. Each patient received an intrave-

18nous injection of 3.7MBq/kg (0.1mCi/kg) of F-FDG. After the 
injection, patients rested in a dimly lit, quiet environ-ment for 
approximately 60 minutes before the scan and were instruc-
ted to empty their bladders. The CT parameters at both insti-
tutions were a tube voltage of 120kV, tube current of 120mA, 
and slice thickness of 2.0mm. Positron emission tomography 
scans were performed in 3D mode, from the skull vertex to 
the proximal thigh. Each scan took 2 minutes per bed posi-
tion, with CT data used for attenuation correction. Image re-
construction utilized the ordered subset expectation maxi-
mization (OSEM) method with 3 iterations and 10 subsets on 
the Veros device, while the GEMINI GX used LOR (Line of Res-
ponse) reconstruction.

Follow-up
All enrolled patients were followed up at 3- to 6-month inter-
vals after treatment initiation, with the endpoint de�ned as 
overall survival (OS). The median OS for patients with cervi-
cal cancer from the two institutions was 24 months. Based 
on this, patients were categorized into short OS and long OS 
groups.

Data standardization and VOI delineation 
The work�ow of radiomics in this study is illustrated in Figu-
re 2. Two nuclear medicine physicians with �ve years of PET/ 
CT diagnostic experience, blinded to the patients' survival 
times, delineated the volumes of interest (VOI) in PET ima-
ges using LIFEx software (version 7.4, http://www.lifexsoft. 
org; Orsay, France). The VOI included both the tumor and 
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Figure 1. The enrollment of the candidates in the study was �owcharted. 



peritumoral regions. To minimize discrepancies between 
images, the scanned images were resampled to a voxel size 
of 1mm×1mm×1mm. Additionally, PET images were then 
standardized to ensure consistent image analysis and reli-
able results. The standardization process involved batch-ad-
justing the contrast of all images to a uniform level using 
software, applying consistent settings across the entire da-
taset. The general intratumoral region, extending beyond 
the tumor itself, was manually delineated layer by layer. Sub-
sequently, the intratumoral boundary was automatically de-
�ned using a standardized uptake value (SUV) threshold of 
2.5. Following this, 2mm, 4mm, 6mm, and 8mm annular re-
gions were automatically generated around the tumor bo-
undary to delineate the peritumoral areas. Any adjacent non-
tumor tissues, such as the bladder, kidneys, or surrounding 
normal bowel, were manually excluded from these annular 
regions.

Radiomics feature extraction and selection
Radiomic feature extraction was performed using the Pyradi-
omics module in Python 3.7.0, which extracted a total of 2016 
PET-based radiomic features for each VOI. Detailed informa-
tion about the extracted features is provided in Figure S1. Fe-
ature standardization was then performed using the Z-score 
method. To mitigate discrepancies arising from the use of dif-
ferent imaging devices, Combat harmonization was applied 
as a preprocessing step to address scanner variability.

During the radiomics feature selection process, features 
with a Pearson correlation coe�cient exceeding 0.90 were 
considered highly correlated, and only the feature with hig-
her area under the ROC curve AUC value was retained. After 
applying Least Absolute Shrinkage and Selection Operator 
(LASSO) regression, features with non-zero coe�cients we-
re selected for further analysis.

Add Figure S1 legend 

Figure 2. Flow chart of radiomics analysis. 
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Optimal machine learning algorithm selection 
After radiomic feature selection, a total of 20 intratumoral 
and peritumoral radiomic models were constructed based on 
various combinations of four ensemble learning algorithms: 
RF, SVM, GBM, and MLP, applied across �ve tumor modalities 
(intratumoral, peritumoral 2mm, 4mm, 6mm, and 8mm). The 
optimal machine learning algorithm was selected from these 
models based on performance. 

Optimal peritumoral model and combined model con-
struction 
The AUC of the optimal machine learning algorithms for the 
four peritumoral models were compared, and the best-per-
forming peritumoral model was chosen. Finally, a combined 
model was developed by integrating the intratumoral mo-
del with the optimal peritumoral model.

Model explanation and visualization
Shapley additive explanations, a method grounded in ga-
me theory, is utilized to explain machine learning model 
predictions by calculating Shapley values [13]. A key advan-
tage of SHAP is its ability to quantify the contribution of 
each feature to the model's prediction, ensuring consisten-
cy in the interpretation of results.

Shapley additive explanations values were used to eva-
luate the overall importance of features within the combined 
model, which demonstrated the strongest predictive perfor-
mance. The SHAP summary plot visually represents the in�u-
ence of each feature on the model's predictions, with each 
point corresponding to the SHAP value of a speci�c feature 
for an individual patient. In contrast, the SHAP force plot of-
fers insights into the individual contributions of features to a 
single prediction, highlighting how variations in feature va-
lues a�ect the model's output. This visualization uses arrows 
or color coding to indicate both the direction and magnitude 
of positive or negative contributions, providing a transparent 
and intuitive explanation of the model's decision-making 
process.

Statistical analysis
Quantitative variables are presented as mean±standard 
deviation (SD), and comparisons between two independent 
groups were conducted using the independent-samples t-
test. Categorical variables are expressed as frequencies and 
percentages, with comparisons made using the chi-square 
test or Fisher's exact test. The performance of the radiomics 
model was assessed using various metrics, including AUC, 
sensitivity, speci�city, positive predictive value (PPV), and 
negative predictive value (NPV). Additionally, performance 
was evaluated through ROC curves, calibration curves, and 
decision curve analysis (DCA). Di�erences in AUC values 
between models were analyzed using the DeLong test. All 
statistical analyses were performed in Python (Anaconda3. 
exe), with statistical signi�cance set at a two-sided P-value 
<0.05

Results

Patient characteristics 
As shown in Table 1, no signi�cant di�erences were obser-
ved in the clinical characteristics between the training and 
testing cohorts. Based on a median OS of 24 months, the ca-
ses were divided into two groups: Short OS and long OS. To 
identify potential clinical prognostic factors for cervical can-
cer, univariate logistic regression analysis was conducted. As 
presented in Table 2, no clinical prognostic factors were fo-
und to be independent indicators of prognosis.

Optimal machine learning algorithm based on intra-
tumoral and peritumoral radiomics in the testing co-
hort
Following radiomic feature selection, a total of 5, 2, 5, 11, and 
11 informative features were identi�ed for constructing the 
intratumoral model (Figure S2a), peri-2mm model (Figure 
S2b), peri-4mm model (Figure S2c), peri-6mm model (Figure 
S2d), and peri-8mm model (Figure S2e), respectively. Subse-
quently, 20 machine learning models were developed by in-
tegrating these �ve radiomic models with four distinct mac-
hine learning algorithms: RF, SVM, GBM, and MLP. Among 
the classi�ers, GBM demonstrated superior performance in 
prognosis prediction compared to the other three algori-
thms. Speci�cally, GBM achieved AUC values of 0.677, 0.750, 
0.762, 0.719, and 0.675 for the intratumoral, peri-2mm, 4mm, 
6mm, and 8mm models, respectively, in the testing cohort 
(Figures 3a-3f). Based on these results, GBM was selected as 
the optimal machine learning algorithm for further analysis.

Optimal peritumoral model selection and combined 
model construction 
The diagnostic performance of the radiomics models using 
the GBM algorithm was evaluated across four di�erent peri-
tumoral region sizes in the testing cohort. The corresponding 
AUC values were 0.750, 0.762, 0.719, and 0.675, respectively. 
Among these models, the one incorporating a 4mm peritu-
moral region demonstrated superior diagnostic performance, 
with an optimal balance of stability and accuracy (Figure 4a).

To further enhance model performance, a combined radi-
omics model was developed, integrating six features that 
encompassed both intratumoral characteristics and those 
from the 4mm peritumoral region (Figure S2f). This combi-
ned model was compared against the individual intratumo-
ral and peritumoral models. The results showed that the 
combined model exhibited the highest performance in the 
test set, achieving an AUC of 0.954, sensitivity of 0.867, spe-
ci�city of 1.000, and accuracy of 0.935. The corresponding 
ROC curve for this optimal combined model is shown in Fi-
gure 4a. Additionally, the results of the DeLong test, which 
statistically compared performance di�erences between 
models, are presented in Figure 4b. The calibration curve 
and clinical decision analysis curve further validate the mo-
del's reliability and practical utility, as shown in Figures 4c 
and 4d, respectively. Finally, a comprehensive summary of 
the overall performance metrics for all constructed intratu-
moral, peritumoral, and combined models is provided in 
Table 3.

Visualization of combined model

Original Article
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Table 1. Demographic information and clinical characteristics of patients in the training and validation cohorts.

Characteristics All Training cohort Test cohort P value

Age# 55.55±12.79 55.55±12.72 55.55±13.18 0.998

Pathological type 0.523

squamous Cell Carcinoma 102 (89.47) 74 (89.16) 28 (90.32)

  adenocarcinoma 9 (7.89) 6 (7.23) 3 (9.68)

others 3 (2.63) 3 (3.61) -

FIGO stage 0.469

Ⅰ 15 (13.16) 12 (14.46) 3 (9.68)

Ⅱ 30 (26.32) 23 (27.71) 7 (22.58)

Ⅲ 49 (42.98) 32 (38.55) 17 (54.84)

Ⅳ 20 (17.54) 16 (19.28) 4 (12.90)

Tumor marker 0.819

normal 55 (48.25) 39 (46.99) 16 (51.61)

elevated 59 (51.75) 44 (53.01) 15 (48.39)

Treatment 0.642

signal 35 (30.70) 27 (32.53) 8 (25.81)

combined 79 (69.30) 56 (67.47) 23 (74.19)

2#A t-test was used for age, a �  test or Fisher's exact test was used for the rest

Table 2. Univariate analysis in cervical cancer patients.

OR OR lower 95%CI OR upper 95%CI P value

Age 0.998 0.992 1.005 0.634

Pathological type 0.164 0.032 0.828 0.066

FIGO stage 0.952 0.836 1.083 0.53

Tumor marker 1 0.609 1.642 1

Treatment 1 0.644 1.553 1

OR: odds ratio; CI: con�dence interval

Figure 5 presents the SHAP summary plot, where each point 
represents the impact of a feature value on the model's pre-
diction. Features with greater in�uence are ranked higher 
on the vertical axis, while the horizontal axis shows that po-
sitive values correlate with better prognosis, and negative 
values re�ect poorer outcomes. Red points indicate larger 
feature values, while blue points correspond to smaller 
ones. The plot highlights that the peritumoral feature "squ-
areroot_�rstorder_Minimum" is the most signi�cant factor 
in predicting cervical cancer prognosis. The distribution of 
this feature across the dataset reveals variability in SHAP va-

lues among patients. Notably, the color gradient indicates 
that an increase in the value of "Peri_squareroot_�rstorder 
_minimum" positively contributes to the model's output, 
enhancing the predicted prognosis.

The SHAP force plots (Figure 6) provide a more granular 
explanation of individual patient predictions. These plots vi-
sually depict the SHAP values of features as forces that eit-
her increase or decrease the evaluation. Each prediction be-
gins from the baseline value of 0.49, representing the ave-
rage SHAP value across all predictions. The arrow lengths 
correspond to the magnitude of each feature's contribution



Add Figure S2 legend . 

Figure 3. The ROC curves of the di�erent models for four di�erent algorithms in the test cohort. As indicated, Gradient Boosting was identi�ed to be the optimal classi�er 
with the highest AUC of 0.677, 0.750, 0.762, 0.719, and 0.675 for intratumoral (intra), peritumoral 2mm (peri2mm), peritumoral 4mm (peri4mm), peritumoral 6mm 
(peri6mm) and peritumoral 8mm (peri8mm) models, respectively. 

to the SHAP value, expressed as a percentage. As illustrated in 
Figure 6A, a speci�c patient had a SHAP value of 0.68, sur-
passing the baseline value of 0.49, indicating classi�cation 
into the long OS group. Among the contributing features, the 
red arrow for "squareroot_�rstorder_Minimum" with a value 
of 1.141 played a pivotal role in predicting a favorable prog-

nosis. In contrast, Figure 6B shows another patient with a 
SHAP value of 0.27, below the baseline value of 0.49, sugges-
ting classi�cation into the short OS group. The blue arrow for 
"squareroot_�rstorder_Minimum" with a value of -1.215 
re�ects its negative in�uence on prognosis prediction, contri-
buting to the unfavorable outcome.
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Figure 4. The performance of the intratumoral radiomic models, peritumoral radiomic models and the integrated intratumoral and peritumoral radiomic models. A) Based 
on PET radiomics combined with Gradient Boosting, six models were constructed: one intratumoral model (Intra), four peritumoral models (Peri2-8mm), and one intra-tu-
moral + peritumoral 4mm (Intra_peri4 mm) combined model. As shown in the �gure, the Intra_peri4mm combined model achieved the highest average AUC of 0.954 
(95% CI: 0.82�1.000) in the test cohort, proving to be the optimal model for predicting the prognosis of cervical cancer. B) The di�erences in prediction performance among 
the six constructed models are shown. C) As indicated in the calibration curves, the combined model (Intra_peri4mm) exhibited a superiority on the alignment of predicted 
probability and actual probability. D) The DCA curves also con�rmed the outperformance of the combined model over the other models in the net bene�t.

Table 3. Each evaluation metric of the intratumoral and peritumoral models in the Gradient Boosting machine learning algorithm for the test co-
hort.

Model Name AUC (95%CI) Accuracy Sensitivity Specificity PPV NPV Recall F1

Intratumoral 
model

0.677 (0.471 - 
0.883)

0.710 0.933 0.500 0.636 0.889 0.933 0.757

Peri2mm model
0.750 (0.572 - 

0.929)
0.742 0.933 0.562 0.667 0.900 0.933 0.778

Peri4mm model
0.762(0.582 - 

0.944)
0.806 0.933 0.687 0.737 0.917 0.933 0.824

Peri6mm model
0.719 (0.535 - 

0.902)
0.677 0.733 0.625 0.647 0.714 0.733 0.687

Peri8mm model
0.675 (0.476 - 

0.874)
0.677 0.867 0.500 0.619 0.800 0.867 0.722

Combined model
0.954 (0.882 - 

1.000)
0.935 0.867 1.000 1.000 0.889 0.867 0.929

 AUC: area under the curve; CI: confidence interval; PPV: positive predictive value; NPV: negative predictive value; Peri2mm, peritumoral 
2mm model; Peri4mm, peritumoral 4mm model; Peri6mm, peritumoral 6mm model; Peri8mm, peritumoral 8mm model.

Discussion

This study highlights the potential of integrating intratumo-
18ral and peritumoral radiomic features derived from F-FDG 

PET images to predict cervical cancer prognosis. The �n-
dings emphasize the pivotal role of peritumoral imaging fe-
atures, especially those from the 4 mm surrounding regions, 
in prognosis prediction. When combined with intratumoral 

features to construct a comprehensive predictive model, 
these features signi�cantly enhance prediction accuracy. 
Furthermore, the application of SHAP values provides valu-
able insights into how individual and collective features 
contribute to prognosis prediction, thereby improving both 
model interpretability and clinical utility.

The peritumoral region, where tumour cells interact with 
adjacent normal tissue cells, represents the external tumor 
microenvironment [14]. Tumor invasion into surrounding 



Figure 5. Shapley additive explanations summary plots of combined radiomic model (intratumoral + peritumoral 4mm model). The plot illustrated the feature relevance 
attributions to the model's predictive performance. 

normal tissue can cause morphological and textural chan-
ges in the peritumoral area [15]. Radiomic features e�ecti-
vely capture subtle structural alterations within both tumor 
and peritumoral tissues, re�ecting changes in the tumor 
microenvironment [16, 17]. Given the close association bet-
ween the tumor microenvironment and tumor aggressive-
ness as well as treatment response, it signi�cantly in�uences 
disease prognosis [18-21]. However, research on peritumoral 
radiomics in cervical cancer remains limited. Li et al. (2021) 
[7] explored PET/CT-based radiomics in early-stage cervical 
cancer, focusing on intratumoral and 2-3 mm peritumoral re-
gions, and found that their model e�ectively predicted E-
cadherin expression, signi�cantly correlating with pelvic 
lymph node metastasis. In a study of 247 patients with early-
stage cervical cancer, Zhang et al. (2023) [22] developed a ra-
diomics model incorporating T2WI, DWI, and 3mm peritu-
moral regions, achieving an AUC of 0.846 for predicting lym-

ph node metastasis. Takada et al. (2020) [23], analyzing data 
from 87 patients with cervical cancer, showed that features 
from expanded tumor regions in T2-weighted imaging 
(T2WI) and apparent di�usion coe�cient (ADC) maps accu-
rately predicted recurrence after radiotherapy, with AUC-
ROC values of 0.82, 0.82, and 0.86 for di�erent expanded pe-
ritumoral regions: 4mm in T2WI and 4mm and 8mm in ADC. 
Despite these advancements, controversy remains regar-
ding the optimal tumor region size. This study constructed 
radiomics models for the peritumoral area using di�erent 
thicknesses (2mm, 4mm, 6mm, and 8mm), the results show 
that the tumor surrounding model with a 4mm surrounding 
region yielded the highest predictive performance. How-
ever, as the surrounding tumor region expanded, no impro-
vement in prediction performance was observed. This �n-
ding aligns with recent studies [24, 25], which suggest that 
the closer the surrounding tumor region is to the tumor inte-

Figure 6. Shapley additive explanations force plots explained impact process of each signi�cant features on the �nal predicted probability. The colour represents the contri-
butions of each feature, with red being positive and blue being negative. The length of the colour bar represents the contribution strength. The OS of patient A was 76 months 
(long OS group), and the OS of patient B was 16 months (short OS group). For instance, high feature value of Peri_squareroot_�rstorder_Minimum contributed to the incre-
ase in the assessment probability of the long OS group. Patient B had a Peri_squareroot_�rstorder_Minimum value of -1.215, while a higher Peri_squarero-
ot_�rstorder_Minimum value of patient A (1.141) contributed to assessing the long OS group. 
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rior, the richer the tumor heterogeneity information it con-
tains. On the other hand, overly expanding the surrounding 
tumor region may introduce additional noise, leading to a 
decline in the model's predictive performance. In addition 
to analyzing intratumoral and peritumoral radiomics inde-
pendently, a combined model integrating both intratumo-
ral and peritumoral features were developed. The results re-
vealed that the predictive performance of models based so-
lely on intratumoral or peritumoral radiomics (2-8mm) was 
slightly lower. However, the combined model, incorporating 
both intratumoral and 4mm peritumoral features, signi�-
cantly improved predictive accuracy. This suggests that 
both the internal tumor region and the 4mm peritumoral 
microenvironment provide valuable and complementary 
prognostic information.

To improve the interpretability and transparency of mac-
hine learning models, SHAP values were applied to a combi-
ned model utilizing the GBM algorithm, enhancing its expla-
inability and evaluating the impact of key features. The use 
of SHAP values in cervical cancer has been explored in areas 
such as diagnosis [26], microbial pathogenesis [27], predic-
tion of radiation-induced rectal in�ammation post-radio-
therapy [28, 29], PD-L1 and PD-1 expression prediction[30], 
and prognosis prediction [31]. Shapley additive explana-
tions values assess the contribution of each feature to the 
model's output, and SHAP decision plots further visualize 
the decision-making process of the GBM algorithm. In this 
study, key features identi�ed for predicting cervical cancer 
prognosis included the intratumoral feature lbp_3D_m1_ 
�rstorder_Kurtosis, the peritumoral feature squarero-
ot_�rstorder_Minimum, and wavelet.HHH_glcm_Correla-
tion. The high value of lbp_3D_m1_�rstorder_Kurtosis likely 
corresponds to regions of irregular cell growth within the tu-
mor, represented as abnormal high- and low-density areas 
in imaging, suggesting increased tumor heterogeneity. Tu-
mor heterogeneity typically re�ects irregular cell growth, 
which is associated with tumor aggressiveness and malig-
nancy, making it a critical prognostic factor [32]. Meanwhile, 
the peritumoral feature squareroot_�rstorder_Minimum fo-
cuses on changes in the tumor's surrounding microenviron-
ment. This minimum value captures alterations in the vascu-
lature and interstitial spaces of tissue surrounding the tu-
mor, which are essential factors in�uencing tumor spread 
and patient survival [33]. Additionally, wavelet transform 
analyzes image signals at various frequency scales, e�ecti-
vely capturing subtle but crucial texture information that 
may be overlooked by visual inspection. Previous studies 
have also shown that wavelet features possess strong pre-
dictive capabilities and play a crucial role in the construction 
of radiomics models [34, 35]. This study further con�rms the-
se �ndings. The intratumoral feature wavelet.HHH_glcm_ 
Correlation is signi�cantly associated with cervical cancer 
prognosis, suggesting that these features are robust pre-
dictors of outcomes.

This study demonstrates that the GBM algorithm, whe-
ther applied to intratumoral or peritumoral radiomic featu-
res, serves as the optimal classi�er for predicting cervical 
cancer prognosis, showcasing its robustness. GBM excels in 
capturing complex nonlinear relationships and feature in-
teractions within data [36, 37]. Ji et al. (2022) [38] succes-

sfully used the GBM algorithm to predict cancer-speci�c sur-
vival (CSS) in 1050 patients with intrahepatic cholangiocar-
cinoma using common clinical parameters, achieving a C-
statistic ≥0.72 and outperforming traditional prognostic 
scoring or staging systems. Similarly, Zhao et al. (2022) [39] 
predicted physical therapy outcomes in 142 patients with 
lumbar disc herniation, with the GBM algorithm yielding the 
best predictive performance (AUC=0.936), outperforming 
the RF model (AUC=0.883). These studies suggest that the 
GBM algorithm is a powerful tool for both large and small 
sample datasets. The strong performance of the GBM algori-
thm in this study can be attributed to several factors. First, 
the iterative boosting of multiple weak learners (typically 
decision trees) gives GBM a high �tting ability, enabling it to 
handle complex nonlinear relationships and providing high 
predictive accuracy. Second, the study included a large 
number of features, particularly in the combined model with 
4,032 features. As a tree-based algorithm, GBM is well-suited 
to handle vast feature sets and automatically select the most 
important ones, e�ectively managing high-dimensional 
data. 

This study has several limitations. First, the sample size is 
relatively small, and future research could improve the ge-
neralizability of the model by incorporating a larger and mo-
re diverse patient population. Second, as this study was ret-
rospective, certain biases may have been introduced, parti-
cularly concerning image acquisition and patient selection. 
Therefore, future studies should adopt standardized ima-
ging protocols within prospective designs to further re�ne 
and validate the model. Third, this study used two di�erent 
PET scanner models with consistent scanning parameters. 
However, the di�erences in reconstruction methods (OSEM 
and LOR) were not fully addressed as a potential limitation. 
These methods can impact SUV distribution and peritumo-
ral texture features, potentially leading to variations in re-
sults. Future studies should consider standardizing recon-
struction algorithms or further assess their impact on ima-
ging features to reduce errors and biases. Additionally, inte-
grating additional imaging modalities, such as MRI or CT, 
with radiomic data from PET images could provide comple-
mentary analysis to optimize model performance.

In conclusion, the radiomics of the 4-mm peritumoral re-
gion plays a pivotal role in predicting survival outcomes in 
cervical cancer. Furthermore, the combined radiomics mo-
del, which integrates both peritumoral and intratumoral fe-
atures, has been identi�ed as the optimal model. By integra-
ting the GBM algorithm with SHAP value-based interpreta-
bility analysis, this study provides a robust and clinically me-
aningful framework for personalized prognosis prediction.
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